Excessive Ethanol Intake in Mice Does Not Impair Recovery of Torque after Repeated Bouts of Eccentric Contractions

Alcoholics develop muscle atrophy and weakness from excessive ethanol (EtOH) intake. To date, most research has examined outcomes of alcohol-induced atrophy and weakness under basal or unstressed conditions despite physical stress being a normal occurrence in a physiological setting. Therefore, this...

Full description

Saved in:
Bibliographic Details
Published inMedicine and science in sports and exercise Vol. 55; no. 5; p. 873
Main Authors Moser, Samantha E, Brown, Austin M, Ganjayi, Muni Swamy, Otis, Jeffrey S, Baumann, Cory W
Format Journal Article
LanguageEnglish
Published United States 01.05.2023
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Alcoholics develop muscle atrophy and weakness from excessive ethanol (EtOH) intake. To date, most research has examined outcomes of alcohol-induced atrophy and weakness under basal or unstressed conditions despite physical stress being a normal occurrence in a physiological setting. Therefore, this study set out to determine if recovery of torque is impaired after repetitive bouts of physical stress in skeletal muscle during excessive short-term (experiment 1) and long-term (experiment 2) EtOH consumption. Twenty male and female mice were assigned to receive either 20% EtOH in their drinking water or 100% water. Short- and long-term consumption was predetermined to be EtOH intake starting at 4 and 26 wk, respectively. Anterior crural muscles performed repeated bouts of physical stress using in vivo eccentric contractions, with tetanic isometric torque being measured immediately pre- and postinjury. A total of 10 bouts were completed with 14 d between each bout within bouts 1-5 (experiment 1) and bouts 6-10 (experiment 2), and 12 wk between bouts 5 and 6. Mice consuming EtOH had blood alcohol concentrations up to 270 mg·dL -1 . In experiment 1, five bouts of eccentric contractions did not reduce recovery of torque, regardless of sex or EtOH treatment ( P ≥ 0.173). Similarly, in experiment 2, preinjury torques did not differ from day 14 values regardless of sex or treatment ( P ≥ 0.322). However, there was a group effect in female mice for bouts 6 and 10 during experiment 2, with female EtOH mice being weaker than controls ( P ≤ 0.002). Excessive short- or long-term EtOH misuse in a mouse model did not affect the muscle's ability to regain strength after repeated bouts of eccentric contractions, suggesting that EtOH may not be as detrimental to recovery as once predicted.
ISSN:1530-0315
DOI:10.1249/MSS.0000000000003118