Estimating c-level partial correlation graphs with application to brain imaging

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that changes the functional connectivity of the brain. The alteration of the strong connections between different brain regions is of particular interest to researchers. In this article, we use partial correlations to model the brain co...

Full description

Saved in:
Bibliographic Details
Published inBiostatistics (Oxford, England) Vol. 21; no. 4; pp. 641 - 658
Main Authors Qiu, Yumou, Zhou, Xiao-Hua
Format Journal Article
LanguageEnglish
Published England 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alzheimer’s disease (AD) is a chronic neurodegenerative disease that changes the functional connectivity of the brain. The alteration of the strong connections between different brain regions is of particular interest to researchers. In this article, we use partial correlations to model the brain connectivity network and propose a data-driven procedure to recover a $c$-level partial correlation graph based on PET data, which is the graph of the absolute partial correlations larger than a pre-specified constant $c$. The proposed procedure is adaptive to the “large p, small n” scenario commonly seen in whole brain studies, and it incorporates the variation of the estimated partial correlations, which results in higher power compared to the existing methods. A case study on the FDG-PET images from AD and normal control (NC) subjects discovers new brain regions, Sup Frontal and Mid Frontal in the frontal lobe, which have different brain functional connectivity between AD and NC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1465-4644
1468-4357
1468-4357
DOI:10.1093/biostatistics/kxy076