Composite Matrices Based on Copolyamide and Polypyrrole for Tissue Engineering
We have demonstrated the possibility of application of electroconducting polymers for fabricating bioactive matrices for tissue engineering. Polypyrrole is most promising among such polymers in the context of its biomedical applications. Polypyrrole possesses a number of properties that make it an a...
Saved in:
Published in | Technical physics Vol. 65; no. 10; pp. 1574 - 1579 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.10.2020
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We have demonstrated the possibility of application of electroconducting polymers for fabricating bioactive matrices for tissue engineering. Polypyrrole is most promising among such polymers in the context of its biomedical applications. Polypyrrole possesses a number of properties that make it an adequate basis for preparing “smart” bioactive materials. To obtain the best mechanical properties of composite matrices, we used aliphatic copolyamide. The matrices obtained from the copolyamide solution had the structure of thin films, as well as fibrous nonwoven mats prepared by electroformation. Copolyamide films were modified with polypyrrole using polymerization by oxidation with the formation of composite matrices. The samples obtained in this way exhibited service properties acceptable for applications and an electric conductivity level sufficient for cell technologies. In the in vitro experiments, the copolyamide- and polypyrrole-based matrices support the viability, adhesion, and proliferation of human dermal fibroblasts. |
---|---|
ISSN: | 1063-7842 1090-6525 |
DOI: | 10.1134/S1063784220100217 |