Tritium recycling and retention in JET
JET's 1997 Deuterium Tritium Experiment (DTE1) allows a detailed study of hydrogenic isotope recycling and retention in a pumped divertor configuration relevant to ITER. There appear to be two distinct forms of retained tritium. (1) A dynamic inventory which controls the fueling behaviour of a...
Saved in:
Published in | Journal of nuclear materials Vol. 266; pp. 153 - 159 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.1999
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | JET's 1997 Deuterium Tritium Experiment (DTE1) allows a detailed study of hydrogenic isotope recycling and retention in a pumped divertor configuration relevant to ITER. There appear to be two distinct forms of retained tritium. (1) A dynamic inventory which controls the fueling behaviour of a single discharge, and in particular determines the isotopic composition. This is shown to be consistent with neutral particle implantation over the whole vessel surface area. (2) A continually growing inventory, which plays a small role in the particle balance of a single discharge, but ultimately dominates the hydrogenic inventory for an experimental campaign comprising thousands of pulses. This will be the dominant retention mechanism in long-pulse devices like ITER. The JET retention scaled-up to ITER proportions suggests that ITER may reach its tritium inventory limit in less than 100 pulses. |
---|---|
ISSN: | 0022-3115 1873-4820 |
DOI: | 10.1016/S0022-3115(98)00662-X |