Removal of heavy metal ions from wastewater using two-dimensional transition metal carbides

Water is an indispensable material for human life. Unfortunately, the development of industrial activities has reduced the quality of water resources in the world. Meantime, heavy metals are an important factor in water pollution due to their toxicity. This study highlights the method for the captur...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular graphics & modelling Vol. 130; p. 108774
Main Authors Ajaj, Yathrib, Basem, Ali, Khaddour, Mohammad H., Yadav, Anupam, Kaur, Mandeep, Sharma, Rohit, Alsubih, Majed, Islam, Saiful, Zainul, Rahadian
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Water is an indispensable material for human life. Unfortunately, the development of industrial activities has reduced the quality of water resources in the world. Meantime, heavy metals are an important factor in water pollution due to their toxicity. This study highlights the method for the capture of heavy metal ions from wastewater using the procedure of adsorption. The adsorption of toxic heavy metal ions (Pb2+, Hg2+, and Cd2+) on Ca2C as well as Cr2C carbide-nitride MXene monolayers is investigated using the density functional theory. We have carried out the optimization of the considered MXenes by nine DFT functionals: PBE, TPSS, BP86, B3LYP, TPSSh, PBE0, CAM-B3LYP, M11, and LC-WPBE. Our results have shown a good agreement with previously measured electronic properties of the Ca2C and Cr2C MXene layers and the PBE DFT method. The calculated cohesive energy for the Ca2C and Cr2C MXene monolayers are −4.12 eV and −4.20 eV, respectively, which are in agreement with the previous studies. The results reveal that the adsorbed heavy metal ions have a substantial effect on the electronic properties of the considered MXene monolayers. Besides, our calculations show that the metal/MXene structures with higher electron transport rates display higher binding energy as well as charge transfers between the metal and Ca2C and Cr2C layers. Time-dependent density functional analysis also displayed “ligand to metal charge transfer” excitations for the metal/MXene systems. The larger Ebin for the Pb@Ca2C as well as Pb@Cr2C are according to larger redshifts which are expected (Δλ = 45 nm and 71 nm, respectively). Our results might be helpful for future research toward the application of carbide-nitride MXene materials for removing wastewater pollutants. [Display omitted] •The DFT study on the adsorption of pollutant Cd2+, Hg2+, and Pb2+ on MXene layers.•Analysis of possible charge transfers between the cations and the MXenes.•TDDFT analysis showed “ligand to metal charge transfer” excitations for the complexes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1093-3263
1873-4243
1873-4243
DOI:10.1016/j.jmgm.2024.108774