Matching of orbital integrals (transfer) and Roche Hecke algebra isomorphisms
Let $F$ be a non-Archimedean local field, $G$ a connected reductive group defined and split over $F$ , and $T$ a maximal $F$ -split torus in $G$ . Let $\unicode[STIX]{x1D712}_{0}$ be a depth-zero character of the maximal compact subgroup $T$ of $T(F)$ . This gives by inflation a character $\unicode[...
Saved in:
Published in | Compositio mathematica Vol. 156; no. 3; pp. 533 - 603 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Cambridge University Press
01.03.2020
Foundation Compositio Mathematica |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let
$F$
be a non-Archimedean local field,
$G$
a connected reductive group defined and split over
$F$
, and
$T$
a maximal
$F$
-split torus in
$G$
. Let
$\unicode[STIX]{x1D712}_{0}$
be a depth-zero character of the maximal compact subgroup
$T$
of
$T(F)$
. This gives by inflation a character
$\unicode[STIX]{x1D70C}$
of an Iwahori subgroup
$\unicode[STIX]{x2110}\subset T$
of
$G(F)$
. From Roche [
Types and Hecke algebras for principal series representations of split reductive
$p$
-
adic groups
, Ann. Sci. Éc. Norm. Supér. (4)
31
(1998), 361–413],
$\unicode[STIX]{x1D712}_{0}$
defines a reductive
$F$
-split group
$\widetilde{G}^{\prime }$
whose connected component
$G^{\prime }$
is an endoscopic group of
$G$
, and there is an isomorphism of
$\mathbb{C}$
-algebras
$\unicode[STIX]{x210B}(G(F),\unicode[STIX]{x1D70C})\rightarrow \unicode[STIX]{x210B}(\widetilde{G}^{\prime }(F),1_{\unicode[STIX]{x2110}^{\prime }})$
where
$\unicode[STIX]{x210B}(G(F),\unicode[STIX]{x1D70C})$
is the Hecke algebra of compactly supported
$\unicode[STIX]{x1D70C}^{-1}$
-spherical functions on
$G(F)$
and
$\unicode[STIX]{x2110}^{\prime }$
is an Iwahori subgroup of
$G^{\prime }(F)$
. This isomorphism gives by restriction an injective morphism
$\unicode[STIX]{x1D701}:Z(G(F),\unicode[STIX]{x1D70C})\rightarrow Z(G^{\prime }(F),1_{\unicode[STIX]{x2110}^{\prime }})$
between the centers of the Hecke algebras. We prove here that a certain linear combination of morphisms analogous to
$\unicode[STIX]{x1D701}$
realizes the transfer (matching of strongly
$G$
-regular semi-simple orbital integrals). If
$\operatorname{char}(F)=p>0$
, our result is unconditional only if
$p$
is large enough. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0010-437X 1570-5846 |
DOI: | 10.1112/S0010437X19007838 |