Crystal structure of the GH-46 subclass III chitosanase from Bacillus circulans MH-K1 in complex with chitotetraose
Chitosanases (EC 3.2.1.132) hydrolyze chitosan which is a polymer of glucosamine (GlcN) linked by β - 1,4 bonds, and show cleavage specificity against partially acetylated chitosan containing N-acetylglucosamine (GlcNAc) residues. Chitosanases' structural underpinnings for cleavage specificity...
Saved in:
Published in | Biochimica et biophysica acta. General subjects Vol. 1868; no. 3; p. 130549 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Chitosanases (EC 3.2.1.132) hydrolyze chitosan which is a polymer of glucosamine (GlcN) linked by β - 1,4 bonds, and show cleavage specificity against partially acetylated chitosan containing N-acetylglucosamine (GlcNAc) residues. Chitosanases' structural underpinnings for cleavage specificity and the conformational switch from open to closed structures are still a mystery.
The GH-46 subclass III chitosanase from Bacillus circulans MH-K1 (MH-K1 chitosanase), which also catalyzes the hydrolysis of GlcN-GlcNAc bonds in addition to GlcN-GlcN, has had its chitotetraose [(GlcN)
]-complexed crystal structure solved at 1.35 Å resolution.
The MH-K1 chitosanase's (GlcN)
-bound structure has numerous structural similarities to other GH-46 chitosanases in terms of substrate binding and catalytic processes. However, subsite -1, which is absolutely specific for GlcN, seems to characterize the structure of a subclass III chitosanase due to its distinctive length and angle of a flexible loop. According to a comparison of the (GlcN)
-bound and apo-form structures, the particular binding of a GlcN residue at subsite -2 through Asp77 causes the backbone helix to kink, which causes the upper- and lower-domains to approach closely when binding a substrate.
Although GH-46 chitosanases vary in the finer details of the subsites defining cleavage specificity, they share similar structural characteristics in substrate-binding, catalytic processes, and potentially in conformational change.
The precise binding of a GlcN residue to the -2 subsite is essential for the conformational shift that occurs in all GH-46 chitosanases, as shown by the crystal structures of the apo- and substrate-bound forms of MH-K1 chitosanase. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0304-4165 1872-8006 1872-8006 |
DOI: | 10.1016/j.bbagen.2023.130549 |