Acute exposure to polystyrene nanoplastics induces unfolded protein response and global protein ubiquitination in lungs of mice

Inhaling microplastics (MPs) and nanoplastics (NPs) in the air can damage lung function. Xenobiotics in the body can cause endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) activation alleviates ER stress. Degradation of unfolded or misfolded proteins is an important pathway...

Full description

Saved in:
Bibliographic Details
Published inEcotoxicology and environmental safety Vol. 280; p. 116580
Main Authors Chen, Yanhong, Liu, Yingqi, Li, Yanli, Yao, Chenjuan, Qu, Jianhua, Tang, Juan, Chen, Gang, Han, Yu
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 15.07.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inhaling microplastics (MPs) and nanoplastics (NPs) in the air can damage lung function. Xenobiotics in the body can cause endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) activation alleviates ER stress. Degradation of unfolded or misfolded proteins is an important pathway for recovering cellular homeostasis. The UPR and protein degradation induced by MPs/NPs in lung tissues are not well understood. Here, we investigated the UPR and protein ubiquitination in the lungs of mice exposed to polystyrene (PS)-NPs and their possible molecular mechanisms leading to protein ubiquitination. Mice were intratracheally administered with 5.6, 17, and 51 mg/kg PS-NPs once for 24 h. Exposure to PS-NPs elevated protein ubiquitination in the lungs of mice in a dose-dependent manner. PS-NPs activated three branches of UPR including inositol-requiring protein 1α (IRE1α), eukaryotic translation initiator factor 2α (eIF2α), and activating transcription factor 6α (ATF6α) in the lungs of mice. However, activated IRE1α did not trigger X-box binding protein 1 (XBP1) mRNA splicing. Exposure to PS-NPs induced an increase in the levels of E3 ubiquitin ligase hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (HRD1) and carboxy terminus of Hsc70 interacting protein (CHIP) in the lungs of mice and BEAS-2B cells. ATF6α siRNA inhibited the levels of HRD1 and CHIP proteins induced by PS-NPs in BEAS-2B cells. These results suggest that ATF6α plays a critical role in increasing ubiquitination of unfolded or misfolded proteins by alleviating PS-NPs induced ER stress through UPR to achieve ER homeostasis in the lungs of mice. [Display omitted] •Acute exposure to PS-NPs induces UPR in lungs of mice and BEAS-2B cells.•PS-NPs increase ubiquitination of proteins in lungs of mice and BEAS-2B cells.•ATF6α plays a key role in the ubiquitination of proteins induced by PS-NPs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0147-6513
1090-2414
1090-2414
DOI:10.1016/j.ecoenv.2024.116580