Surface plasmon effect combined with S-scheme charge migration in flower-like Ag/Ag6Si2O7/Bi12O17Cl2 enables efficient photocatalytic antibiotic degradation

A flower-like Ag/Ag6Si2O7/Bi12O17Cl2 plasmonic S-scheme heterojunction with is synthesized via a simple route. Under the synergistic cooperation of S-scheme heterostructure, and plasmonic effect, Ag/Ag6Si2O7/Bi12O17Cl2 exhibits exceptional photocatalytic properties toward antibiotic destruction unde...

Full description

Saved in:
Bibliographic Details
Published inApplied surface science Vol. 679; p. 161303
Main Authors Shen, Chuqi, Li, Xinyu, Xue, Bing, Feng, Diejing, Liu, Yanping, Yang, Fang, Zhang, Mingyi, Li, Shijie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A flower-like Ag/Ag6Si2O7/Bi12O17Cl2 plasmonic S-scheme heterojunction with is synthesized via a simple route. Under the synergistic cooperation of S-scheme heterostructure, and plasmonic effect, Ag/Ag6Si2O7/Bi12O17Cl2 exhibits exceptional photocatalytic properties toward antibiotic destruction under visible light irradiation. [Display omitted] •A plasmonic S-scheme heterojunction of Ag/Ag6Si2O7/Bi12O17Cl2 was synthesized.•Ag/Ag6Si2O7/Bi12O17Cl2 manifests superb photo-activity for antibiotic removal.•The photocatalytic mechanism, antibiotic degradation process and toxicities are analyzed.•The combination of S-scheme junction and plasmonic effect accounts for the reinforced catalytic performance. Developing robust photocatalysts for photocatalytic environment decontamination is significant and challenging. A novel flower-like S-scheme Ag/Ag6Si2O7/Bi12O17Cl2 (AASO/BOC) plasmonic heterojunction is successfully constructed using a facile route, and applied in photocatalytic destruction of tetracycline hydrochloride (TC) and levofloxacin (LEV) under visible-light irradiation. Benefiting from the combination of S-scheme Bi12O17Cl2/Ag6Si2O7 heterojunction and the plasma Ag, the production and separation of photogenerated carriers are dramatically enhanced. Consequently, compared to the pristine Bi12O17Cl2 and Ag6Si2O7, AASO/BOC displays superior photocatalytic degradation performance. Impressively, the photocatalytic TC degradation rate of AASO/BOC-2 reaches 0.0260 min−1, which is approximately 3.1, 14.4 and 2.0 times those of Bi12O17Cl2, Ag6Si2O7 and Bi12O17Cl2/Ag6Si2O7, respectively. Moreover, the photocatalytic mechanism of TC degradation is studied in depth via various techniques, and the photogenerated OH, O2− and h+ collectively contribute to the photo-degradation of TC. This research puts forward a neoteric approach to designing plasmonic S-scheme photocatalysts for environmental applications.
ISSN:0169-4332
DOI:10.1016/j.apsusc.2024.161303