Label enhanced and patch based deep learning for phase retrieval from single frame fringe pattern in fringe projection 3D measurement

We propose a label enhanced and patch based deep learning phase retrieval approach which can achieve fast and accurate phase retrieval using only several fringe patterns as training dataset. To the best of our knowledge, it is the first time that the advantages of the label enhancement and patch str...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 27; no. 20; p. 28929
Main Authors Shi, Jiashuo, Zhu, Xinjun, Wang, Hongyi, Song, Limei, Guo, Qinghua
Format Journal Article
LanguageEnglish
Published 30.09.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose a label enhanced and patch based deep learning phase retrieval approach which can achieve fast and accurate phase retrieval using only several fringe patterns as training dataset. To the best of our knowledge, it is the first time that the advantages of the label enhancement and patch strategy for deep learning based phase retrieval are demonstrated in fringe projection. In the proposed method, the enhanced labeled data in training dataset is designed to learn the mapping between the input fringe pattern and the output enhanced fringe part of the deep neural network (DNN). Moreover, the training data is cropped into small overlapped patches to expand the training samples for the DNN. The performance of the proposed approach is verified by experimental projection fringe patterns with applications in dynamic fringe projection 3D measurement.We propose a label enhanced and patch based deep learning phase retrieval approach which can achieve fast and accurate phase retrieval using only several fringe patterns as training dataset. To the best of our knowledge, it is the first time that the advantages of the label enhancement and patch strategy for deep learning based phase retrieval are demonstrated in fringe projection. In the proposed method, the enhanced labeled data in training dataset is designed to learn the mapping between the input fringe pattern and the output enhanced fringe part of the deep neural network (DNN). Moreover, the training data is cropped into small overlapped patches to expand the training samples for the DNN. The performance of the proposed approach is verified by experimental projection fringe patterns with applications in dynamic fringe projection 3D measurement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.028929