Improving comparative analyses of Hi-C data via contrastive self-supervised learning

Abstract Hi-C is a widely applied chromosome conformation capture (3C)-based technique, which has produced a large number of genomic contact maps with high sequencing depths for a wide range of cell types, enabling comprehensive analyses of the relationships between biological functionalities (e.g....

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 24; no. 4
Main Authors Li, Han, He, Xuan, Kurowski, Lawrence, Zhang, Ruotian, Zhao, Dan, Zeng, Jianyang
Format Journal Article
LanguageEnglish
Published England Oxford University Press 20.07.2023
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Hi-C is a widely applied chromosome conformation capture (3C)-based technique, which has produced a large number of genomic contact maps with high sequencing depths for a wide range of cell types, enabling comprehensive analyses of the relationships between biological functionalities (e.g. gene regulation and expression) and the three-dimensional genome structure. Comparative analyses play significant roles in Hi-C data studies, which are designed to make comparisons between Hi-C contact maps, thus evaluating the consistency of replicate Hi-C experiments (i.e. reproducibility measurement) and detecting statistically differential interacting regions with biological significance (i.e. differential chromatin interaction detection). However, due to the complex and hierarchical nature of Hi-C contact maps, it remains challenging to conduct systematic and reliable comparative analyses of Hi-C data. Here, we proposed sslHiC, a contrastive self-supervised representation learning framework, for precisely modeling the multi-level features of chromosome conformation and automatically producing informative feature embeddings for genomic loci and their interactions to facilitate comparative analyses of Hi-C contact maps. Comprehensive computational experiments on both simulated and real datasets demonstrated that our method consistently outperformed the state-of-the-art baseline methods in providing reliable measurements of reproducibility and detecting differential interactions with biological meanings.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1467-5463
1477-4054
DOI:10.1093/bib/bbad193