Sliding Banyan network

The sliding Banyan network is described and evaluated. The novel three-dimensional (3-D) multistage network topology employs a macro-lenslet array in a retroreflective configuration to effect the required shuffle link patterns across a single two-dimensional (2-D) multichip array of "smart pixe...

Full description

Saved in:
Bibliographic Details
Published inJournal of lightwave technology Vol. 14; no. 5; pp. 703 - 710
Main Authors Haney, M.W., Christensen, M.P.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.05.1996
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The sliding Banyan network is described and evaluated. The novel three-dimensional (3-D) multistage network topology employs a macro-lenslet array in a retroreflective configuration to effect the required shuffle link patterns across a single two-dimensional (2-D) multichip array of "smart pixels". An electronic deflection routing scheme, based on simple destination tag self-routing, is employed within the smart pixels, Internal packet blocking is efficiently avoided because deflected packets are routed through individualized banyan networks that have "slid" in the time dimension to accommodate each packet's routing needs. Simulations show that this self-routing approach reduces the number of stages, and hence the number of switching and interconnection resources necessary to achieve a specified blocking probability. Experimental focusing and registration results, using arrays of vertical cavity surface emitting lasers, show that conventional optical imaging technology is suitable for this architecture. The results indicate that the sliding banyan approach will overcome the current performance constraints of conventional metallic interconnections and be scalable to ATM switching applications with aggregate throughputs in the Tb/s regime.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0733-8724
1558-2213
DOI:10.1109/50.495148