Epitaxial growth and characterization of GaN thin films on graphene/sapphire substrate by embedding a hybrid-AlN buffer layer
This study investigates that high-quality GaN thin films can be grown on a few-layer graphene (FLG)/sapphire substrate by embedding a hybrid AlN buffer layer (BL). The hybrid AlN BL is constructed by low-temperature AlN nucleation layer (LT-AlN NL) and high-temperature AlN BL grown respectively by s...
Saved in:
Published in | Applied surface science Vol. 494; pp. 644 - 650 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.11.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study investigates that high-quality GaN thin films can be grown on a few-layer graphene (FLG)/sapphire substrate by embedding a hybrid AlN buffer layer (BL). The hybrid AlN BL is constructed by low-temperature AlN nucleation layer (LT-AlN NL) and high-temperature AlN BL grown respectively by sputtering and metal organic chemical vapor deposition (MOCVD). The high density of edge-type threading dislocation (TD) in the GaN sample without hybrid AlN BL provide current leakage paths, resulting in a symmetric and temperature-independent I-V characteristic curve for a Ni-based Schottky contact. The excellent adhesion and uniform coverage of LT-AlN NL on the FLG layer by sputtering can overcome the nucleation issue and prevent the thermal etching effect of graphene during MOCVD epitaxial process. The edge-type TD density and carbon concentration of the GaN thin films grown on the hybrid AlN BL/FLG/sapphire substrate can be reduced significantly, resulting in a lower intensity of blue, green, and orange luminescences on a 17-K photoluminescence spectrum. The Ni-based Schottky contact with a barrier height of 0.69 eV and leakage current density of 4.38 × 10−6 A/cm2 is obtained, which demonstrates that a high-quality GaN thin films can be grown onto an FLG substrate by embedding a hybrid AlN BL.
[Display omitted]
•Graphene dissociation is suppressed by embedding a hybrid AlN buffer layer.•High crystalline quality of GaN thin-films is grown on a graphene substrate.•A PTC characteristic of Ni/GaN Schottky diode is obtained on a graphene substrate. |
---|---|
ISSN: | 0169-4332 1873-5584 |
DOI: | 10.1016/j.apsusc.2019.07.211 |