Ground state solutions for a quasilinear Kirchhoff type equation

We study the ground state solutions of the following quasilinear Kirchhoff type equation \[ -\left(1+b\int_{\mathbb{R}^{3}}|\nabla u|^2dx\right)\Delta u + V(x)u-[\Delta(u^2)]u=|u|^{10}u+\mu |u|^{p-1}u,\qquad x\in \mathbb{R}^3, \] where $b\geq 0$ and $\mu$ is a positive parameter. Under some suitable...

Full description

Saved in:
Bibliographic Details
Published inElectronic journal of qualitative theory of differential equations Vol. 2016; no. 90; pp. 1 - 14
Main Authors Liu, Hongliang, Chen, Haibo, Xiao, Qizhen
Format Journal Article
LanguageEnglish
Published University of Szeged 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study the ground state solutions of the following quasilinear Kirchhoff type equation \[ -\left(1+b\int_{\mathbb{R}^{3}}|\nabla u|^2dx\right)\Delta u + V(x)u-[\Delta(u^2)]u=|u|^{10}u+\mu |u|^{p-1}u,\qquad x\in \mathbb{R}^3, \] where $b\geq 0$ and $\mu$ is a positive parameter. Under some suitable conditions on $V(x),$ we obtain the existence of ground state solutions of the above equation with $1<p<11.$
ISSN:1417-3875
1417-3875
DOI:10.14232/ejqtde.2016.1.90