Restriction endonucleases and their applications
Restriction endonucleases are deoxyribonucleases which cleave double-stranded DNA into fragments. With only one exception, all restriction endonucleases recognize short, non-methylated DNA sequences. Restriction endonucleases can be divided into two groups based on the position of the cleavage site...
Saved in:
Published in | Enzyme and Microbial Technology Vol. 1; no. 3; pp. 154 - 164 |
---|---|
Main Authors | , , |
Format | Book Review Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.1979
|
Online Access | Get full text |
Cover
Loading…
Summary: | Restriction endonucleases are deoxyribonucleases which cleave double-stranded DNA into fragments. With only one exception, all restriction endonucleases recognize short, non-methylated DNA sequences. Restriction endonucleases can be divided into two groups based on the position of the cleavage site relative to the recognition sequence. Class I restriction endonucleases cleave double-stranded DNA at positions outside the recognition sequence and generate fragments of random size. The cleavage sites of Class II restriction endonucleases are located, in most cases, within the recognition sequence. Most of the Class II restriction endonucleases recognize 4, 5, or 6 base pair palindromes and generate fragments with either flush ends or staggered ends. DNA fragments with staggered ends contain 3, 4, or 5 nucleotide single-stranded tails called ‘sticky ends’. DNA fragments produced by Class II restriction endonuclease cleavage can be separated on gels according to their molecular weight. The fragments can be isolated from the gel and used for sequence analysis to elucidate genetic information stored in DNA. Further, an isolated fragment can be inserted into a small extrachromosomal DNA, e.g. plasmid, phage or viral DNA, and its replication and expression can be studied in clones of prokaryotic or eukaryotic cells. Restriction endonucleases and cloning technology are powerful modern tools for attacking genetic problems in medicine, agriculture and industrial microbiology. |
---|---|
ISSN: | 0141-0229 1879-0909 |
DOI: | 10.1016/0141-0229(79)90022-X |