Document image decoding using Markov source models

Document image decoding (DID) is a communication theory approach to document image recognition. In DID, a document recognition problem is viewed as consisting of three elements: an image generator, a noisy channel and an image decoder. A document image generator is a Markov source (stochastic finite...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 16; no. 6; pp. 602 - 617
Main Authors Kopec, G.E., Chou, P.A.
Format Journal Article
LanguageEnglish
Published Los Alamitos, CA IEEE 01.06.1994
IEEE Computer Society
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Document image decoding (DID) is a communication theory approach to document image recognition. In DID, a document recognition problem is viewed as consisting of three elements: an image generator, a noisy channel and an image decoder. A document image generator is a Markov source (stochastic finite-state automaton) that combines a message source with an imager. The message source produces a string of symbols, or text, that contains the information to be transmitted. The imager is modeled as a finite-state transducer that converts the 1D message string into an ideal 2D bitmap. The channel transforms the ideal image into a noisy observed image. The decoder estimates the message, given the observed image, by finding the a posteriori most probable path through the combined source and channel models using a Viterbi-like dynamic programming algorithm. The proposed approach is illustrated on the problem of decoding scanned telephone yellow pages to extract names and numbers from the listings. A finite-state model for yellow page columns was constructed and used to decode a database of scanned column images containing about 1100 individual listings.< >
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0162-8828
1939-3539
DOI:10.1109/34.295905