Optimal partitioning of cache memory

A model for studying the optimal allocation of cache memory among two or more competing processes is developed and used to show that, for the examples studied, the least recently used (LRU) replacement strategy produces cache allocations that are very close to optimal. It is also shown that when pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computers Vol. 41; no. 9; pp. 1054 - 1068
Main Authors Stone, H.S., Turek, J., Wolf, J.L.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.1992
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A model for studying the optimal allocation of cache memory among two or more competing processes is developed and used to show that, for the examples studied, the least recently used (LRU) replacement strategy produces cache allocations that are very close to optimal. It is also shown that when program behavior changes, LRU replacement moves quickly toward the steady-state allocation if it is far from optimal, but converges slowly as the allocation approaches the steady-state allocation. An efficient combinatorial algorithm for determining the optimal steady-state allocation, which, in theory, could be used to reduce the length of the transient, is described. The algorithm generalizes to multilevel cache memories. For multiprogrammed systems, a cache-replacement policy better than LRU replacement is given. The policy increases the memory available to the running process until the allocation reaches a threshold time beyond which the replacement policy does not increase the cache memory allocated to the running process.< >
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9340
1557-9956
DOI:10.1109/12.165388