Heterostructure design of carbon fiber@graphene@layered double hydroxides synergistic microstructure for lightweight and flexible microwave absorption
At present, there is an urgent need to develop lightweight and flexible high-efficiency microwave absorbing materials. Herein, reduced graphene oxide (RGO) was successfully attached to cotton-derived flexible carbon fiber (CF) by electrostatic self-assembly, and then two-dimensional layered double h...
Saved in:
Published in | Carbon (New York) Vol. 197; pp. 466 - 475 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | At present, there is an urgent need to develop lightweight and flexible high-efficiency microwave absorbing materials. Herein, reduced graphene oxide (RGO) was successfully attached to cotton-derived flexible carbon fiber (CF) by electrostatic self-assembly, and then two-dimensional layered double hydroxides (LDH) were closely arranged on the surface of CF/RGO to form a unique core-sheath structure. The carbonized CF contains a large number of heteroatoms, which enhance the dielectric loss caused by polarization. In addition, RGO acts as an intermediate layer to facilitate the conductive loss of the CF/RGO/LDH composite. Moreover, the voids created by the stacked LDH induce the scattering and reflection of electromagnetic waves and optimize the impedance characteristics. As a result, the ternary core-sheath CF/RGO/LDH composite shows the optimal reflection loss value of −60.9 dB at 10.3 GHz with a thickness of 2.5 mm and efficient absorption bandwidth value of 6.1 GHz when the filling ratio is only 20 wt%. This work provides an efficient route for the design and preparation of lightweight and flexible microwave absorbing materials.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2022.06.075 |