Acoustic Assessment of Microstructural Deformation Mechanisms on a Cold Rolled Cu30Zn Brass
The relationship between acoustic parameters and the microstructure of a Cu30Zn brass plate subjected to plastic deformation was evaluated. The plate, previously annealed at 550 °C for 30 min, was cold rolled to reductions ranging from 10% to 70%. Linear ultrasonic measurements were performed on eac...
Saved in:
Published in | Materials Vol. 17; no. 13; p. 3321 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
04.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The relationship between acoustic parameters and the microstructure of a Cu30Zn brass plate subjected to plastic deformation was evaluated. The plate, previously annealed at 550 °C for 30 min, was cold rolled to reductions ranging from 10% to 70%. Linear ultrasonic measurements were performed on each of the nine specimens, corresponding to the nine different reductions, using the pulse-echo method to record the times of flight of longitudinal waves along the thickness axis. Subsequently, acoustic measurements were conducted to determine the nonlinear parameter β through second harmonic generation. Microstructural analysis, carried out by X-ray diffraction, Vickers hardness testing, and optical microscopy, revealed an increase in deformation twins, reaching a maximum at 40% thickness reduction. At higher deformations, the microstructure showed the generation and proliferation of shear bands, coinciding with a decrease in the twinning structure and an increase in dislocation density. The longitudinal wave velocity exhibited a 0.9% decrease at 20% deformation, attributed to dislocations and initial twin formation, followed by a continuous increase up to 2% beyond this point, resulting from the combined effects of twinning and shear banding. The nonlinear parameter β displayed a notable maximum, approximately one order of magnitude greater than its original value, at 40% deformation. This peak correlates with a roughly tenfold increase in twinning fault probability at the same deformation level. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17133321 |