Ultra-high speed all-optical shift registers and their applications in OTDM networks
All-optical shift registers are basic building modules for the development of ultra-high speed optical time division multiplexing networks. In this paper, we review the progress that has been made in this cutting-edge technology, focusing on implementations that exploit the attractive features of se...
Saved in:
Published in | Optical and quantum electronics Vol. 36; no. 11; pp. 1005 - 1053 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer
01.09.2004
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | All-optical shift registers are basic building modules for the development of ultra-high speed optical time division multiplexing networks. In this paper, we review the progress that has been made in this cutting-edge technology, focusing on implementations that exploit the attractive features of semiconductor optical amplifier (SOA)-based interferometric configurations. We present regenerative storage performed with an all-optical recirculating shift register with an inverter at 10 Gb/s using a SOA-assisted Sagnac switch and a second SOA to provide feedback. We demonstrate also an all-optical memory based on the SOA-assisted Ultrafast Nonlinear Interferometer capable of reading/writing 20 Gb/s packets of variable length without data inversion. These registers can find application in the development of two nontrivial complex all-optical circuits of enhanced functionality. The first is an all-optical pseudorandom binary sequence generator for which we describe an efficient design algorithm and propose ways for monitoring and verification. The second is an all-optical error counter for which we address the error detection and evaluation issues using a novel sampling technique. These circuits are key elements for the implementation of a high-speed, all-optical bit error rate tester (BERT), which has the potential to outperform its electronic equivalent and constitute a possible new product for the telecommunications industry. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-004-2040-9 |