The structure of the electric double layer: Atomistic versus continuum approaches
This article reviews recent forays in theoretical modeling of the double layer structure at electrode/electrolyte interfaces by current atomistic and continuum approaches. We will briefly discuss progress in both approaches and present a perspective on how to better describe the electric double laye...
Saved in:
Published in | Current opinion in electrochemistry Vol. 33; p. 100953 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This article reviews recent forays in theoretical modeling of the double layer structure at electrode/electrolyte interfaces by current atomistic and continuum approaches. We will briefly discuss progress in both approaches and present a perspective on how to better describe the electric double layer by combining the unique advantages of each method. First-principles atomistic approaches provide the most detailed insights into the electronic and geometric structure of electrode/electrolyte interfaces. However, they are numerically too demanding to allow for a systematic investigation of the electric double layers over a wide range of electrochemical conditions. Yet, they can provide valuable input for continuum approaches that can capture the influence of the electrochemical environment on a larger length and time scale due to their numerical efficiency. However, continuum approaches rely on reliable input parameters. Conversely, continuum methods can provide a preselection of interface structures and conditions to be further studied on the atomistic level. |
---|---|
ISSN: | 2451-9103 2451-9111 |
DOI: | 10.1016/j.coelec.2022.100953 |