Effects of an Angiotensin IV Analog on 3-Nitropropionic Acid-Induced Huntington’s Disease-Like Symptoms in Rats

Background: Huntington’s disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric dysfunction caused by a mutant huntingtin protein. Compromised metabolic activity resulting from systemic administration of the mitochondrial toxin, 3-nitropropionic acid (3-NP),...

Full description

Saved in:
Bibliographic Details
Published inJournal of Huntington's disease Vol. 13; no. 1; pp. 55 - 66
Main Authors Wells, Russell G., Azzam, Azzam F., Hiller, Amie L., Sardinia, Michael F.
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2024
IOS Press BV
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background: Huntington’s disease (HD) is a neurodegenerative disorder characterized by motor, cognitive, and psychiatric dysfunction caused by a mutant huntingtin protein. Compromised metabolic activity resulting from systemic administration of the mitochondrial toxin, 3-nitropropionic acid (3-NP), is known to mimic the pathology of HD and induce HD-like symptoms in rats. N-hexanoic-Tyr-Ile-(6)-amino hexanoic amide (PNB-0408), also known as Dihexa, has been shown to have neuroprotective and procognitive properties in animal models of Alzheimer’s and Parkinson’s diseases. Given the mechanism of action and success in other neurodegenerative diseases, we felt it an appropriate compound to investigate further for HD. Objective: The present study was designed to test if PNB-0408, an angiotensin IV analog, could attenuate 3-NP-induced HD-like symptoms in rats and serve as a potential therapeutic agent. Methods: Forty male Wistar rats were randomized into three groups consisting of a “vehicle” group, a “3-NP” group, and a “3-NP + PNB-0408” group. PNB-0408 was administered along with chronic exposure to 3-NP. Animal body weight, motor function, and cognitive abilities were measured for five weeks, before euthanasia and histopathological analysis. Results: Exposure to 3-NP decreased the amount of weight rats gained, impaired spatial learning and memory consolidation, and led to marked motor dysfunction. From our observations and analysis, PNB-0408 did not protect rats from the deficits induced by 3-NP neurotoxicity. Conclusions: Our findings suggest that PNB-0408 may not be an efficacious treatment strategy for preventing 3-NP-induced HD-like symptoms in a preclinical model. These data highlight the need for further research of this compound in alternate models and/or alternative approaches to managing this disorder.
ISSN:1879-6397
1879-6397
1879-6400
DOI:10.3233/JHD-231507