Synthesis of chiral arogenic acid via immobilized microbial proteins

Although l-(8 S)-arogenate has been recognized as a potential precursor of l-phenylalanine or l-tyrosine biosynthesis for only a few years, it is widely distributed in nature. The biochemical formation of arogenate has involved its isolation from the culture supernatant of a mutant strain of Neurosp...

Full description

Saved in:
Bibliographic Details
Published inBioorganic chemistry Vol. 11; no. 1; pp. 32 - 42
Main Authors Zamir, L.O., Jung, E.D., Tiberio, R.D.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.1982
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although l-(8 S)-arogenate has been recognized as a potential precursor of l-phenylalanine or l-tyrosine biosynthesis for only a few years, it is widely distributed in nature. The biochemical formation of arogenate has involved its isolation from the culture supernatant of a mutant strain of Neurospora crassa, a lengthy procedure of 20-day duration. We now report an improved approach using immobilized crude enzyme extracts from a cyanobacterium. The starting materials, chorismic acid or prephenic acid, are readily available, and overall yields ranging from 40 to 60% are obtained. The whole procedure takes only 1 day. Crude, unfractionated enzyme extracts from Synechocystis sp. ATCC 29108 are immobilized on a phenoxyacetyl cellulose solid support. The hydrophobic binding of the extract proteins did not denature chorismate mutase or prephenate aminotransferase, the enzymes catalyzing the conversion of chorismate to prephenate and prephenate to arogenate, respectively. This microbial system was ideally suited for preparation of arogenate, since other enzyme activities which might compete for prephenate or chorismate as substrates, or which might further metabolize arogenate, were absent or inactive under the conditions used. In addition to the substrates prephenate or chorismate, pyridoxal-5′-phosphate (the coenzyme required for transamination), as well as leucine (amino donor for transamination of prephenate), was added. The reaction product, arogenate, was separated from the starting materials by preparative thin-layer chromatography.
ISSN:0045-2068
1090-2120
DOI:10.1016/0045-2068(82)90046-3