Comparison of ARIMA, ANN and LSTM for Stock Price Prediction

The prediction of stock prices has always been a hot topic of research. However, the autoregressive integrated moving average (ARIMA) model commonly used and artificial neural networks (ANN) still have their own advantages and disadvantages. The use of long short-term memory (LSTM) networks model fo...

Full description

Saved in:
Bibliographic Details
Published inE3S web of conferences Vol. 218; p. 1026
Main Author Ma, Qihang
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The prediction of stock prices has always been a hot topic of research. However, the autoregressive integrated moving average (ARIMA) model commonly used and artificial neural networks (ANN) still have their own advantages and disadvantages. The use of long short-term memory (LSTM) networks model for prediction also shows interesting possibilities. This article compares three models specifically through the analysis of the principles of the three models and the prediction results. In the end, it is believed that the LSTM model may have the best predictive ability, but it is greatly affected by the data processing. The ANN model performs better than that of the ARIMA model. The combination of time series and external factors may be a worthy research direction.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202021801026