Dialkylmagnesium‐Promoted Deprotonation of Protic Precursors for the Activated Anionic Ring‐Opening Polymerization of Epoxides
Dialkylmagnesium (R2Mg) compounds are investigated as deprotonating agents of various protic functions to form reactive precursors for the anionic ring‐opening polymerization of epoxides, i.e., ethylene oxide, propylene oxide, butylene oxide, and methyl glycidyl ether, activated by triisobutylalumin...
Saved in:
Published in | Macromolecular chemistry and physics Vol. 219; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
05.01.2018
Wiley-VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Dialkylmagnesium (R2Mg) compounds are investigated as deprotonating agents of various protic functions to form reactive precursors for the anionic ring‐opening polymerization of epoxides, i.e., ethylene oxide, propylene oxide, butylene oxide, and methyl glycidyl ether, activated by triisobutylaluminum (i‐Bu3Al). Experiments show a polymerizability of those monomers with the proposed system, short reaction times (hours), and a molar mass control up to 10 000 g mol−1. Protic moieties such as alcohol, thiol, amine, and alkyne are first deprotonated and then shown to initiate polyether chains. A precise study of the nature of the introduced groups in the α‐position of the polyether chains is presented. Monohydroxy terminated poly(ethylene oxide) and poly(dimethyl siloxane) are also used as macroinitiator after deprotonation by R2Mg for the polymerization of propylene oxide in the presence of i‐Bu3Al in order to get block copolymers.
Magnesium alkoxides, prepared by reaction of simple dialkylmagnesium with protic molecules, are shown to achieve the polymerization of substituted epoxides when associated to triisobutylaluminum. |
---|---|
ISSN: | 1022-1352 1521-3935 |
DOI: | 10.1002/macp.201700195 |