Investigating the effect of unloading on artificial sandstone behaviour using the Discrete Element Method
The Discrete Element Method (DEM) was used to simulate the mechanical behaviour of a reservoir sandstone. Triaxial tests were carried out using 3D-DEM to simulate the stress-strain behaviour of a sandstone with comparisons made between the numerical tests and the laboratory tests. The influence of i...
Saved in:
Published in | EPJ Web of Conferences Vol. 140; p. 15030 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Les Ulis
EDP Sciences
01.01.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Discrete Element Method (DEM) was used to simulate the mechanical behaviour of a reservoir sandstone. Triaxial tests were carried out using 3D-DEM to simulate the stress-strain behaviour of a sandstone with comparisons made between the numerical tests and the laboratory tests. The influence of isotropic unloading was investigated, which was found to have impacts on bond breakages and was successfully captured in the 3D shearing processes. It was found that bond breakages correlated strongly with the stress-strain behaviour of the sandstone affecting the peak strength. It was also found that unloading affected the bond breakages, which then changed the mechanical behaviour of sandstone. The tangent stiffnesses of simulated virgin and cored samples under different confining stresses were compared. From the tangent stiffnesses, gross yield envelopes and the yielding surfaces for unloaded samples and virgin samples were plotted and analysed in detail. |
---|---|
ISSN: | 2100-014X 2101-6275 2100-014X |
DOI: | 10.1051/epjconf/201714015030 |