Revolutionising Heat Treatment: Novel Strategies for Augmented Performance and Sustainability

This research investigates a paradigm shift in heat treatment practises that is characterised by transformational changes. Despite their widespread use, traditional technologies are often linked to issues such as energy inefficiency, pollution, and material waste. In order to tackle these aforementi...

Full description

Saved in:
Bibliographic Details
Published inE3S web of conferences Vol. 430; p. 1200
Main Authors Kumar, Kaushal, Dixit, Saurav, Haq, Md. Zia ul, Maksudovna, Vafaeva Khristina, Vatin, Nikolai Ivanovich, Rekha, M., Awaar, Vinay Kumar, Singla, Atul, Jhade, Srinivas
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This research investigates a paradigm shift in heat treatment practises that is characterised by transformational changes. Despite their widespread use, traditional technologies are often linked to issues such as energy inefficiency, pollution, and material waste. In order to tackle these aforementioned issues, this study explores novel methodologies like high-pressure gas quenching, laser-assisted heat treatment, additive manufacturing for customised microstructures, and ultra-fast induction heating. These methodologies provide not only enhanced material functionality but also environmentally friendly outcomes by means of energy conservation and waste minimization. This study highlights the crucial significance of these breakthroughs in defining a future where improved material qualities align with environmentally responsible practises. It does this by examining their advantages, environmental consequences, and problems in implementation. The use of heat treatment techniques has been shown to significantly boost the performance of materials. This academic study aims to explore the sustainability aspects of heat treatment methods, particularly in comparison to conventional approaches. The focus will be on evaluating the energy efficiency and reduction of material waste associated with a specific heat treatment technique known as high-pressure gas quenching.
Bibliography:ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202343001200