Experimental Investigation of All-Optical NRZ-DPSK to RZ-DPSK Format Conversion Based on TOAD
We propose and experimentally demonstrate a novel all-optical non-return-to-zero differential-phase-shift-keying (NRZ-DPSK) to return-to-zero differentiM-phase-shift-keying (RZ-DPSK) format conversion scheme. This scheme is based on the terahertz optical asymmetric demultiplexer (TOAD). A 10 Gb/s co...
Saved in:
Published in | Chinese physics letters Vol. 32; no. 11; pp. 56 - 62 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/32/11/114204 |
Cover
Summary: | We propose and experimentally demonstrate a novel all-optical non-return-to-zero differential-phase-shift-keying (NRZ-DPSK) to return-to-zero differentiM-phase-shift-keying (RZ-DPSK) format conversion scheme. This scheme is based on the terahertz optical asymmetric demultiplexer (TOAD). A 10 Gb/s converted RZ-DPSK signal is obtained with a wide duty cycle tuning range from 16% to 66%. For all converted RZ-DPSK signals, the receiver sensitivities at BER of 10-9 are 0.4 to 1.7dB higher compared with the original NRZ-DPSK signal. The clear and open eye diagrams are presented to demonstrate the high quality format conversion performance. Moreover, the optical spectra show that this conversion is in a wavelength-preserving operation. |
---|---|
Bibliography: | 11-1959/O4 MAO Ya-Ya, SHENG Xin-Zhi, WU Chong-Qing , ZHANG Tian-Yong,WANG Ying(Institute of Optical Information, and Key Lab of Luminescence and Optical Information Technology (Ministry of Education), Beijing Jiaotong University, Beijing 100044) We propose and experimentally demonstrate a novel all-optical non-return-to-zero differential-phase-shift-keying (NRZ-DPSK) to return-to-zero differentiM-phase-shift-keying (RZ-DPSK) format conversion scheme. This scheme is based on the terahertz optical asymmetric demultiplexer (TOAD). A 10 Gb/s converted RZ-DPSK signal is obtained with a wide duty cycle tuning range from 16% to 66%. For all converted RZ-DPSK signals, the receiver sensitivities at BER of 10-9 are 0.4 to 1.7dB higher compared with the original NRZ-DPSK signal. The clear and open eye diagrams are presented to demonstrate the high quality format conversion performance. Moreover, the optical spectra show that this conversion is in a wavelength-preserving operation. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/32/11/114204 |