Topographical effects of transcutaneous electrical nerve stimulation on the H-reflex of the triceps surae muscles

The present study was conducted on eight normal subjects in order to evaluate the effects of transcutaneous electrical nerve stimulation (TENS); 99 Hz, 250 μs pulse duration, applied over either the common peroneal (CPN) or sural nerve, on the H-reflex of the soleus (SO), gastrocnemius medialis (GM)...

Full description

Saved in:
Bibliographic Details
Published inJournal of electromyography and kinesiology Vol. 4; no. 2; pp. 116 - 125
Main Authors Goulet, C., Arsenault, A.B., Bourbonnais, D., Levin, M.F.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 1994
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The present study was conducted on eight normal subjects in order to evaluate the effects of transcutaneous electrical nerve stimulation (TENS); 99 Hz, 250 μs pulse duration, applied over either the common peroneal (CPN) or sural nerve, on the H-reflex of the soleus (SO), gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) muscles. Within each session, SO, GL and GM H-reflexes were recorded before (for 5 min), during (for 30 min) and after (for 10 min) TENS was applied at twice the sensory threshold for perception. It was found that, on average, while the stimulation was administered on the CPN: (a) the GL H-reflex amplitude increased by 40% (Friedman test: χ 2 = 11.71, P < 0.05); (b) the SO H-reflex decreased (≥ 10% H ctrl), although not in a statistically significant manner, in five of eight subjects; and (c) the GM H-reflex remained, overall, relatively stable. No significant effects of TENS over the sural nerve were found on any of the investigated muscles. The finding of increased H-reflex amplitudes in GL during TENS made it less likely that CPN stimulation had reciprocal inhibitory effects. However, such an increase could be attributed to a selective effect (such as a decrease in the recruitment threshold) on type II motoneurons of the GL. Furthermore, the topographical effects observed on the GL during TENS may reflect selective local effects due to stimulation of a sensory branch of the CPN, the lateral sural nerve, which mainly innervates the skin overlying the GL. The absence of effects noted on the GM during TENS further supports this hypothesis as the cutaneous afferents overlying that muscle were not stimulated. The repetitive cutaneous stimulation over the sural nerve, at the lateral malleolus, may have been too distal to stimulate the cutaneous receptors overlying the SO.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1050-6411
1873-5711
DOI:10.1016/1050-6411(94)90033-7