The Effects of Gas Composition on the Atmospheric Pressure Plasma Jet Modification of Polyethylene Films

Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O2 gas for different periods of time. The influence of gas type on the plasma polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 17; no. 5; pp. 402 - 408
Main Author 孙洁 邱夷平
Format Journal Article
LanguageEnglish
Published 01.05.2015
Subjects
Online AccessGet full text
ISSN1009-0630
DOI10.1088/1009-0630/17/5/07

Cover

Loading…
More Information
Summary:Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O2 gas for different periods of time. The influence of gas type on the plasma polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of COO than the comparable He/O2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O2 plasma treated ones with other conditions unchanged.
Bibliography:Polyethylene (PE) films are treated using an atmospheric pressure plasma jet (APPJ) with He or He/O2 gas for different periods of time. The influence of gas type on the plasma polymer interactions is studied. The surface contact angle of the PE film can be effectively lowered to 58° after 20 s of He/O2 plasma treatment and then remains almost unchanged for longer treatment durations, while, for He plasma treatment, the film surface contact angle drops gradually to 47° when the time reaches 120 s. Atomic force microscopy (AFM) results show that the root mean square (RMS) roughness was significantly higher for the He/O2 plasma treated samples than for the He plasma treated counterparts, and the surface topography of the He/O2 plasma treated PE films displays evenly distributed dome-shaped small protuberances. Chemical composition analysis reveals that the He plasma treated samples have a higher oxygen content but a clearly lower percentage of COO than the comparable He/O2 treated samples, suggesting that differences exist in the mode of incorporating oxygen between the two gas condition plasma treatments. Electron spin resonance (ESR) results show that the free radical concentrations of the He plasma treated samples were clearly higher than those of the He/O2 plasma treated ones with other conditions unchanged.
SUN Jie , QIU Yiping (1Department of Textile Engineering, College of Textiles and Clothing, Jiangnan University Wuxi 214122, China 2Department of Textile Materials Science and Product Design, College of Textiles, Donghua University, Shanghai 201620, China)
34-1187/TL
atmospheric pressure plasma jet, PE film, wettability, free radicals, plasma- polymer interactions
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1009-0630
DOI:10.1088/1009-0630/17/5/07