Effect of Segmented Electrode Length on the Performances of an Aton-Type Hall Thruster

The influences of the low-emissive graphite segmented electrode t)laeed near the channel exit on the discharge characteristics of a Hall thruster are studied using the particle- in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configura...

Full description

Saved in:
Bibliographic Details
Published inPlasma science & technology Vol. 18; no. 5; pp. 525 - 530
Main Author 段萍 边兴宇 曹安宁 刘广睿 陈龙 殷燕
Format Journal Article
LanguageEnglish
Published 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The influences of the low-emissive graphite segmented electrode t)laeed near the channel exit on the discharge characteristics of a Hall thruster are studied using the particle- in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on the potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with tile increasing of the segmented electrode length, the equipotential lines bend towards the channel exit. and approximately parallel to the wall at the channel surface, the radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of the ionization rate in the discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected.
Bibliography:The influences of the low-emissive graphite segmented electrode t)laeed near the channel exit on the discharge characteristics of a Hall thruster are studied using the particle- in-cell method. A two-dimensional physical model is established according to the Hall thruster discharge channel configuration. The effects of electrode length on the potential, ion density, electron temperature, ionization rate and discharge current are investigated. It is found that, with tile increasing of the segmented electrode length, the equipotential lines bend towards the channel exit. and approximately parallel to the wall at the channel surface, the radial velocity and radial flow of ions are increased, and the electron temperature is also enhanced. Due to the conductive characteristic of electrodes, the radial electric field and the axial electron conductivity near the wall are enhanced, and the probability of the electron-atom ionization is reduced, which leads to the degradation of the ionization rate in the discharge channel. However, the interaction between electrons and the wall enhances the near wall conductivity, therefore the discharge current grows along with the segmented electrode length, and the performance of the thruster is also affected.
34-1187/TL
Hall thruster, segmented electrodes, particle-in-cell, ionization rate
DUAN Ping , BIAN Xingyu , CAO Arming , LIU Guangrui , CHEN Long , YIN Yan( Department of Physics, Da,lian Maritime University, Dalian 116026, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1009-0630
DOI:10.1088/1009-0630/18/5/14