Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing
Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hy...
Saved in:
Published in | Carbohydrate polymers Vol. 294; p. 119824 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0144-8617 1879-1344 1879-1344 |
DOI | 10.1016/j.carbpol.2022.119824 |
Cover
Loading…
Abstract | Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing.
[Display omitted]
•CSGO hydrogels are facilely prepared by green fabrication strategy, without any pollutant and waste generated.•Gelation mechanism based on the variations of hydrogen bonds among CS chains and disordering degree of GO is proposed.•CSGO hydrogels have shear-thinning injectable, self-healing and adhesive properties.•CSGO hydrogels possess prominent hemostatic and wound healing capacity, have promising future for use as wound dressings. |
---|---|
AbstractList | Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing.
[Display omitted]
•CSGO hydrogels are facilely prepared by green fabrication strategy, without any pollutant and waste generated.•Gelation mechanism based on the variations of hydrogen bonds among CS chains and disordering degree of GO is proposed.•CSGO hydrogels have shear-thinning injectable, self-healing and adhesive properties.•CSGO hydrogels possess prominent hemostatic and wound healing capacity, have promising future for use as wound dressings. Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing.Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing. Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing. |
ArticleNumber | 119824 |
Author | Feng, Wenjun Wang, Zhengke |
Author_xml | – sequence: 1 givenname: Wenjun surname: Feng fullname: Feng, Wenjun – sequence: 2 givenname: Zhengke surname: Wang fullname: Wang, Zhengke email: wangzk@zju.edu.cn |
BookMark | eNqFkLFu2zAQhokgAWI7eYQAGrvI5VGiSKJDURhNU8BAhjYzQVEni4ZMuiTdJm8fOfbUxTfcAYf_-4dvTq598EjIA9AlUGg-b5fWxHYfxiWjjC0BlGT1FZmBFKqEqq6vyYxCXZeyAXFL5ilt6TQN0BkxvwY0scyD8975TWF8VyQc-3J6j8eHHVwOyfhyE81-QI9FeHUdFsNbF8MGx6IPsRhwF1I2yaWPgn_hMO1zwx256c2Y8P58F-Tl8fvv1VO5fv7xc_VtXdqK8lw2UqJoLVVt1xpGlRLQMRBccN5Ap6AGXrVcKpA9IAM0dd2AEi1yVFQZrBbk06l3H8OfA6asdy5ZHEfjMRySZgIka0TF2OVooyohKqn4FOWnqI0hpYi93ke3M_FNA9VH-3qrz_b10b4-2Z-4L_9x1mWTXfA5GjdepL-eaJyE_XUYdbIOvcXORbRZd8FdaHgHStKl_w |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_117027 crossref_primary_10_1016_j_carbpol_2024_122568 crossref_primary_10_1016_j_nantod_2024_102400 crossref_primary_10_1016_j_carbpol_2024_122204 crossref_primary_10_1007_s13726_023_01229_x crossref_primary_10_1016_j_ijbiomac_2024_135482 crossref_primary_10_1016_j_carbpol_2024_121912 crossref_primary_10_1021_acsabm_2c00885 crossref_primary_10_1039_D2NR06617C crossref_primary_10_3390_gels10010081 crossref_primary_10_1039_D2CS00173J crossref_primary_10_1208_s12249_024_02948_x crossref_primary_10_1039_D3MH01403G crossref_primary_10_1021_acsanm_3c04413 crossref_primary_10_1016_j_biomaterials_2023_122184 crossref_primary_10_1016_j_ijbiomac_2024_137374 crossref_primary_10_1016_j_carbpol_2023_121640 crossref_primary_10_52711_0974_360X_2024_00784 crossref_primary_10_1039_D3MH00411B crossref_primary_10_1007_s11696_024_03857_w crossref_primary_10_1016_j_ijbiomac_2023_127193 crossref_primary_10_1016_j_carbpol_2023_121408 crossref_primary_10_1016_j_cej_2023_146340 crossref_primary_10_1016_j_ijbiomac_2025_142057 crossref_primary_10_1002_adfm_202405876 crossref_primary_10_1016_j_ijbiomac_2024_138290 crossref_primary_10_1016_j_carbpol_2023_121172 crossref_primary_10_2147_IJN_S483541 crossref_primary_10_1002_mco2_70113 crossref_primary_10_1002_slct_202405715 crossref_primary_10_1021_acsami_2c09309 crossref_primary_10_1016_j_ijbiomac_2024_134098 crossref_primary_10_1002_adhm_202401490 crossref_primary_10_1039_D3TB01904G crossref_primary_10_1002_adhm_202303456 crossref_primary_10_1039_D4QM00562G crossref_primary_10_3390_polym16081098 crossref_primary_10_1039_D4QM00073K crossref_primary_10_1016_j_reactfunctpolym_2025_106229 crossref_primary_10_1007_s11664_023_10307_y crossref_primary_10_1016_j_eurpolymj_2023_112673 crossref_primary_10_1016_j_ijbiomac_2024_130551 crossref_primary_10_1016_j_ijbiomac_2024_132182 crossref_primary_10_1002_cam4_70183 crossref_primary_10_1016_j_actbio_2023_05_025 crossref_primary_10_1016_j_cej_2025_160379 crossref_primary_10_1016_j_diamond_2024_110789 crossref_primary_10_1016_j_cis_2025_103425 crossref_primary_10_3390_pharmaceutics15030807 crossref_primary_10_1016_j_cej_2023_148067 crossref_primary_10_2147_IJN_S472107 crossref_primary_10_1016_j_matdes_2023_111896 crossref_primary_10_1016_j_biopha_2022_114184 crossref_primary_10_1016_j_eurpolymj_2024_113232 crossref_primary_10_1021_acsbiomaterials_2c00730 crossref_primary_10_1016_j_carbpol_2024_121952 crossref_primary_10_1186_s12951_023_01925_z crossref_primary_10_1002_sstr_202400462 crossref_primary_10_3390_gels10040241 crossref_primary_10_1016_j_carbpol_2022_120502 crossref_primary_10_1039_D4BM00394B crossref_primary_10_1007_s10924_022_02577_0 crossref_primary_10_1039_D3BM00169E crossref_primary_10_1177_20417314241282131 crossref_primary_10_1021_acs_langmuir_2c01669 crossref_primary_10_1016_j_ijbiomac_2024_138708 crossref_primary_10_1016_j_mtbio_2024_101315 crossref_primary_10_1016_j_addma_2024_104397 crossref_primary_10_3390_molecules28031473 crossref_primary_10_3390_polym16162345 crossref_primary_10_1016_j_ijbiomac_2023_126854 crossref_primary_10_34133_research_0571 crossref_primary_10_1002_jbm_b_35435 crossref_primary_10_2174_0113816128333493241014134711 crossref_primary_10_1016_j_cej_2023_144648 crossref_primary_10_1016_j_ijbiomac_2024_138413 crossref_primary_10_1016_j_mtbio_2023_100592 crossref_primary_10_3390_polym15092000 crossref_primary_10_1002_adfm_202408367 crossref_primary_10_1016_j_ijbiomac_2024_135270 crossref_primary_10_1021_acs_langmuir_3c03366 crossref_primary_10_1016_j_ijbiomac_2024_137209 crossref_primary_10_3389_fbioe_2023_1335211 crossref_primary_10_1016_j_foodchem_2024_142359 crossref_primary_10_3390_polym15061567 crossref_primary_10_1016_j_progpolymsci_2024_101872 crossref_primary_10_3390_polym14224964 crossref_primary_10_1016_j_ijbiomac_2024_131575 crossref_primary_10_1016_j_ijbiomac_2025_141259 crossref_primary_10_1021_acsami_3c11403 crossref_primary_10_1007_s12247_024_09901_2 crossref_primary_10_1021_acsbiomaterials_3c00161 crossref_primary_10_1002_smll_202304047 crossref_primary_10_1016_j_ijbiomac_2023_127960 crossref_primary_10_1016_j_bioactmat_2024_12_025 crossref_primary_10_1002_adhm_202400884 crossref_primary_10_1007_s10118_024_3146_0 crossref_primary_10_1016_j_surfin_2023_103733 crossref_primary_10_1016_j_carbpol_2023_121707 crossref_primary_10_1016_j_carbpol_2024_122817 crossref_primary_10_1016_j_cej_2025_160852 crossref_primary_10_1039_D2TB02738K crossref_primary_10_1039_D3NR01624B crossref_primary_10_1002_advs_202303326 crossref_primary_10_1016_j_ijbiomac_2023_129115 crossref_primary_10_1016_j_seppur_2024_126812 |
Cites_doi | 10.1002/pc.23594 10.1002/adfm.202100093 10.1002/adfm.202007457 10.1016/j.carbpol.2021.118752 10.1016/j.colsurfb.2020.111398 10.1038/s41570-021-00323-z 10.1016/j.isci.2021.103629 10.1021/acs.biomac.9b01707 10.1016/j.ijbiomac.2015.01.049 10.1021/acsami.6b16192 10.1038/ncomms12033 10.1021/acs.chemrev.9b00814 10.1002/adfm.201401502 10.1021/acs.chemmater.8b00008 10.1021/ja312581r 10.1016/j.msec.2021.112422 10.1016/j.addr.2016.03.007 10.1002/adv.22151 10.1021/am100222m 10.1021/acsami.1c02089 10.1016/j.carbpol.2021.118254 10.1002/mabi.201900370 10.1016/j.carbpol.2020.116826 10.1016/j.actbio.2018.04.027 10.1021/acs.biomac.9b01732 10.1002/adfm.201904156 10.1002/app.45092 10.3390/nano11112879 10.1016/j.bioactmat.2021.05.022 10.1021/sc400352a 10.1002/adfm.201304202 10.1002/mabi.201900385 10.1016/j.bioactmat.2021.10.001 10.1016/j.actbio.2021.09.056 10.1016/j.carbpol.2021.118028 10.1016/j.carbon.2017.09.071 10.1016/j.carbpol.2021.118179 10.1002/adfm.201801000 10.1021/nn503719n 10.1016/j.ijbiomac.2021.12.193 10.1002/smll.201900046 10.1021/acsami.1c14216 10.1007/s42765-020-00050-y 10.1021/acs.biomac.7b01492 10.1002/biot.201900456 10.1088/2053-1591/ab1555 10.1016/j.actbio.2015.11.017 10.1016/j.ijbiomac.2021.09.100 10.1016/j.bioactmat.2021.01.039 10.1016/j.bioactmat.2021.05.039 10.1016/j.carbpol.2020.116922 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2022.119824 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
ExternalDocumentID | 10_1016_j_carbpol_2022_119824 S0144861722007299 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- RIG SCB SEW SMS SOC SSH WUQ XPP 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c305t-688e7bc09bdba209971d217575561d914153b58918f1e21ea446197be5e909ae3 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Thu Sep 04 19:27:35 EDT 2025 Thu Sep 04 21:08:06 EDT 2025 Tue Jul 01 01:24:52 EDT 2025 Thu Apr 24 23:03:09 EDT 2025 Fri Feb 23 02:40:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Graphene oxide Wound healing Chitosan Hemostasis Injectable and self-healing hydrogel |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c305t-688e7bc09bdba209971d217575561d914153b58918f1e21ea446197be5e909ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2693773895 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2718267322 proquest_miscellaneous_2693773895 crossref_primary_10_1016_j_carbpol_2022_119824 crossref_citationtrail_10_1016_j_carbpol_2022_119824 elsevier_sciencedirect_doi_10_1016_j_carbpol_2022_119824 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-15 |
PublicationDateYYYYMMDD | 2022-10-15 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Carbohydrate polymers |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chan, Kim, Wang, Pun, White, Kim (bb0010) 2016; 31 Song, Kong, Shao, Cheng, Lu, Tao, Wang (bb0190) 2021; 136 Pandele, Ionita, Lungu, Vasile, Zaharia, Iovu (bb0170) 2017; 38 Jing, Mi, Napiwocki, Peng, Turng (bb0105) 2017; 125 Li, Yan, Yang, Huang, Chen, Zeng (bb0110) 2017; 9 Zhou, Dai, Fan, Jiang, Liu, Zhou, Tan (bb0265) 2021; 31 Wang, Chen, Lam, Qin, Kwok, Xie, Tang (bb0210) 2013; 135 Nath, Chowdhury, Dolui (bb0165) 2018; 37 Chen, Yang, Ye, Zhang, Ran, Xue, Hu (bb0015) 2018; 73 Liang, Zhao, Hu, Chen, Yin, Ma, Guo (bb0130) 2019; 15 Man, Sidi, Xubo, Jin, Xin (bb0155) 2021; 191 Wang, Nie, Qin, Hu, Tang (bb0215) 2016; 7 Marapureddy, Hivare, Sharma, Chakraborty, Ghosh, Gupta, Thareja (bb0160) 2021; 269 Fan, Liu, Wang, Zhang, Lin, Gong, Yang (bb0060) 2014; 24 Liang, Chen, Li, He, Yin, Guo (bb0125) 2020; 21 Jin, Wang, Hu, Li, Yuan (bb0100) 2020; 2 Wei, Yang, Liu, Xu, Zhou, Zrínyi, Chen (bb0230) 2015; 25 Cao, Wu, Cheng, He, Chen, Zhou (bb0005) 2021; 13 Du, Liu, Yan, Rafique, Li, Shan, Wang (bb0050) 2020; 21 Zheng, Bian, Li, Zhang, Liu, Zhai, Zhao (bb0260) 2020; 249 Huang, Sun, Nie, Lu, Yang, Zhang, Hu (bb0095) 2015; 75 Wei, Ding, Liu, Yang, Cai, Li, Tian (bb0225) 2021; 264 Shin, Li, Jang, Khoshakhlagh, Akbari, Nasajpour, Khademhosseini (bb0185) 2016; 105 Li, Pei, Wan, Yang, Gu, Tao, Xiao (bb0115) 2020; 250 Wang, Zhang, Yang, Fu, Xu, Li, Lee (bb0195) 2020; 30 Chen, Wu, Li, Hao, Yang, Xi, Shi (bb0030) 2020; 20 Deng, Guo, Zhao, Ma, Guo (bb0045) 2018; 30 Liu, Wu, Zhao, Wang (bb0140) 2021; 267 Qiao, Lv, He, Bai, Liu, Hou, Yang (bb0180) 2021; 6 Huang, Cheng, Wang, Zhang, Chen, Zhang (bb0090) 2021; 2009189 Chen, Jiang, Li, Zimba, Yu, Chen, Wu (bb0020) 2019; 6 Cobos, González, Fernández, Fernández (bb0040) 2017; 134 Li, Zhao, Ouyang, Yang, Chen, Luo, Li (bb0120) 2022; 11 Fan, He, Peng, Xie, Su, Wei, Yao (bb0055) 2021; 13 Yang, Tu, Li, Shang, Tao (bb0245) 2010; 2 Guo, Dong, Liang, Li (bb0080) 2021; 5 Luo, Shi, Li, Tan, Feng, Li, He (bb0145) 2021; 6 Pang, Liu, Moussa, Collins, McDonnell, Hayward, Traverso (bb0175) 2019; 6 Chen, Wu, Wang, Zaldivar-Silva, Aguero, Liu, Wang (bb0035) 2021; 129 Chen, Wang, Jian, Fei, Qian, Luo, Xia (bb0025) 2020; 20 Luo, Fan, Liu, Wen, Wang, Guan, Tan (bb0150) 2022; 7 Wei, Cui, Fan, Wu, Li, Zhang, Yang (bb0220) 2022; 199 Han, Yan (bb0085) 2014; 2 Lin, Shen, Wang (bb0135) 2021; 11 Feng, Wang (bb0065) 2022; 25 Zhang, Sun, Wang, Zhang, Dong, Bu, Wang (bb0250) 2021; 31 Figueroa, Carmona, Guajardo, Borges, Aguayo, Fernández (bb0070) 2021; 197 Wang, Guan, Zhuang, Li, Huang, Yang, Shu (bb0200) 2018; 19 Wu, Wang, Gao, Xu, Dai, Liu (bb0235) 2018; 28 Zhang, Zheng, Shu, Zhou, Bao, Xiao, Xia (bb0255) 2022; 276 Xue, Xie, Eichenbaum, Chen, Wang, van den Dolder, Khademhosseini (bb0240) 2020; 15 Wang, Nie, Fang, Yang, Hu, Wang, Tang (bb0205) 2020; 120 Gaharwar, Avery, Assmann, Paul, McKinley, Khademhosseini, Olsen (bb0075) 2014; 8 Wei (10.1016/j.carbpol.2022.119824_bb0220) 2022; 199 Feng (10.1016/j.carbpol.2022.119824_bb0065) 2022; 25 Nath (10.1016/j.carbpol.2022.119824_bb0165) 2018; 37 Huang (10.1016/j.carbpol.2022.119824_bb0090) 2021; 2009189 Gaharwar (10.1016/j.carbpol.2022.119824_bb0075) 2014; 8 Wang (10.1016/j.carbpol.2022.119824_bb0210) 2013; 135 Marapureddy (10.1016/j.carbpol.2022.119824_bb0160) 2021; 269 Pang (10.1016/j.carbpol.2022.119824_bb0175) 2019; 6 Guo (10.1016/j.carbpol.2022.119824_bb0080) 2021; 5 Qiao (10.1016/j.carbpol.2022.119824_bb0180) 2021; 6 Chen (10.1016/j.carbpol.2022.119824_bb0030) 2020; 20 Chen (10.1016/j.carbpol.2022.119824_bb0020) 2019; 6 Wang (10.1016/j.carbpol.2022.119824_bb0200) 2018; 19 Wei (10.1016/j.carbpol.2022.119824_bb0225) 2021; 264 Song (10.1016/j.carbpol.2022.119824_bb0190) 2021; 136 Wang (10.1016/j.carbpol.2022.119824_bb0205) 2020; 120 Fan (10.1016/j.carbpol.2022.119824_bb0060) 2014; 24 Xue (10.1016/j.carbpol.2022.119824_bb0240) 2020; 15 Cao (10.1016/j.carbpol.2022.119824_bb0005) 2021; 13 Wang (10.1016/j.carbpol.2022.119824_bb0215) 2016; 7 Chen (10.1016/j.carbpol.2022.119824_bb0015) 2018; 73 Liu (10.1016/j.carbpol.2022.119824_bb0140) 2021; 267 Chan (10.1016/j.carbpol.2022.119824_bb0010) 2016; 31 Pandele (10.1016/j.carbpol.2022.119824_bb0170) 2017; 38 Jing (10.1016/j.carbpol.2022.119824_bb0105) 2017; 125 Zhou (10.1016/j.carbpol.2022.119824_bb0265) 2021; 31 Fan (10.1016/j.carbpol.2022.119824_bb0055) 2021; 13 Liang (10.1016/j.carbpol.2022.119824_bb0125) 2020; 21 Jin (10.1016/j.carbpol.2022.119824_bb0100) 2020; 2 Cobos (10.1016/j.carbpol.2022.119824_bb0040) 2017; 134 Figueroa (10.1016/j.carbpol.2022.119824_bb0070) 2021; 197 Lin (10.1016/j.carbpol.2022.119824_bb0135) 2021; 11 Luo (10.1016/j.carbpol.2022.119824_bb0145) 2021; 6 Wei (10.1016/j.carbpol.2022.119824_bb0230) 2015; 25 Wang (10.1016/j.carbpol.2022.119824_bb0195) 2020; 30 Wu (10.1016/j.carbpol.2022.119824_bb0235) 2018; 28 Liang (10.1016/j.carbpol.2022.119824_bb0130) 2019; 15 Chen (10.1016/j.carbpol.2022.119824_bb0035) 2021; 129 Man (10.1016/j.carbpol.2022.119824_bb0155) 2021; 191 Zhang (10.1016/j.carbpol.2022.119824_bb0250) 2021; 31 Du (10.1016/j.carbpol.2022.119824_bb0050) 2020; 21 Li (10.1016/j.carbpol.2022.119824_bb0110) 2017; 9 Yang (10.1016/j.carbpol.2022.119824_bb0245) 2010; 2 Zhang (10.1016/j.carbpol.2022.119824_bb0255) 2022; 276 Huang (10.1016/j.carbpol.2022.119824_bb0095) 2015; 75 Li (10.1016/j.carbpol.2022.119824_bb0120) 2022; 11 Zheng (10.1016/j.carbpol.2022.119824_bb0260) 2020; 249 Shin (10.1016/j.carbpol.2022.119824_bb0185) 2016; 105 Luo (10.1016/j.carbpol.2022.119824_bb0150) 2022; 7 Chen (10.1016/j.carbpol.2022.119824_bb0025) 2020; 20 Deng (10.1016/j.carbpol.2022.119824_bb0045) 2018; 30 Han (10.1016/j.carbpol.2022.119824_bb0085) 2014; 2 Li (10.1016/j.carbpol.2022.119824_bb0115) 2020; 250 |
References_xml | – volume: 21 start-page: 1841 year: 2020 end-page: 1852 ident: bb0125 article-title: Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing publication-title: Biomacromolecules – volume: 135 start-page: 8238 year: 2013 end-page: 8245 ident: bb0210 article-title: Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates publication-title: Journal of the American Chemical Society – volume: 15 year: 2020 ident: bb0240 article-title: Synthesis of injectable shear-thinning biomaterials of various compositions of gelatin and synthetic silicate nanoplatelet publication-title: Biotechnology Journal – volume: 75 start-page: 322 year: 2015 end-page: 329 ident: bb0095 article-title: Using absorbable chitosan hemostatic sponges as a promising surgical dressing publication-title: International Journal of Biological Macromolecules – volume: 38 start-page: 363 year: 2017 end-page: 370 ident: bb0170 article-title: Porous chitosan/graphene oxide biocomposites for tissue engineering publication-title: Polymer Composites – volume: 31 start-page: 2007457 year: 2021 ident: bb0265 article-title: Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery publication-title: Advanced Functional Materials – volume: 267 year: 2021 ident: bb0140 article-title: Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review publication-title: Carbohydrate Polymers – volume: 6 start-page: 1901041 year: 2019 ident: bb0175 article-title: Endoscopically injectable shear-thinning hydrogels facilitating polyp removal publication-title: Advanced Science (Weinheim) – volume: 7 start-page: 98 year: 2022 end-page: 111 ident: bb0150 article-title: An injectable, self-healing, electroconductive extracellular matrix-based hydrogel for enhancing tissue repair after traumatic spinal cord injury publication-title: Bioactive Materials – volume: 25 start-page: 1352 year: 2015 end-page: 1359 ident: bb0230 article-title: Novel biocompatible polysaccharide-based self-healing hydrogel publication-title: Advanced Functional Materials – volume: 8 start-page: 9833 year: 2014 end-page: 9842 ident: bb0075 article-title: Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage publication-title: ACS Nano – volume: 2 start-page: 279 year: 2020 end-page: 290 ident: bb0100 article-title: Perylene-based fluorescent sizing agent for precise evaluation of permeability and coating property of sizing paste publication-title: Advanced Fiber Materials – volume: 37 start-page: 3665 year: 2018 end-page: 3679 ident: bb0165 article-title: Chitosan/graphene oxide-based multifunctional pH-responsive hydrogel with significant mechanical strength, self-healing property, and shape memory effect publication-title: Advances in Polymer Technology – volume: 6 start-page: 2829 year: 2021 end-page: 2840 ident: bb0180 article-title: A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings publication-title: Bioactive Materials – volume: 2 start-page: 1707 year: 2010 end-page: 1713 ident: bb0245 article-title: Well-dispersed chitosan/graphene oxide nanocomposites publication-title: ACS Applied Materials & Interfaces – volume: 21 start-page: 1243 year: 2020 end-page: 1253 ident: bb0050 article-title: Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure publication-title: Biomacromolecules – volume: 2 start-page: 296 year: 2014 end-page: 300 ident: bb0085 article-title: Supramolecular hydrogel of chitosan in the presence of graphene oxide nanosheets as 2D cross-linkers publication-title: ACS Sustainable Chemistry & Engineering – volume: 31 start-page: 2100093 year: 2021 ident: bb0250 article-title: Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: Enhancing biomineralization strategy publication-title: Advanced Functional Materials – volume: 199 start-page: 401 year: 2022 end-page: 412 ident: bb0220 article-title: Injectable hydrogel based on dodecyl-modified N-carboxyethyl chitosan/oxidized konjac glucomannan effectively prevents bleeding and postoperative adhesions after partial hepatectomy publication-title: International Journal of Biological Macromolecules – volume: 11 start-page: 2879 year: 2021 ident: bb0135 article-title: Multi-scale photoacoustic assessment of wound healing using chitosan-graphene oxide hemostatic sponge publication-title: Nanomaterials – volume: 15 start-page: 1900046 year: 2019 ident: bb0130 article-title: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing publication-title: Small – volume: 5 start-page: 773 year: 2021 end-page: 791 ident: bb0080 article-title: Haemostatic materials for wound healing applications publication-title: Nature Reviews Chemistry – volume: 250 year: 2020 ident: bb0115 article-title: Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials publication-title: Carbohydrate Polymers – volume: 24 start-page: 3933 year: 2014 end-page: 3943 ident: bb0060 article-title: A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing publication-title: Advanced Functional Materials – volume: 30 start-page: 1729 year: 2018 end-page: 1742 ident: bb0045 article-title: Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions publication-title: Chemistry of Materials – volume: 9 start-page: 9221 year: 2017 end-page: 9225 ident: bb0110 article-title: Injectable self-healing hydrogel with antimicrobial and antifouling properties publication-title: ACS Applied Materials & Interfaces – volume: 6 start-page: 4816 year: 2021 end-page: 4829 ident: bb0145 article-title: An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury publication-title: Bioactive Materials – volume: 2009189 year: 2021 ident: bb0090 article-title: Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel publication-title: Advanced Functional Materials – volume: 13 start-page: 53541 year: 2021 end-page: 53552 ident: bb0055 article-title: Injectable, intrinsically antibacterial conductive hydrogels with self-healing and pH stimulus responsiveness for epidermal sensors and wound healing publication-title: ACS Applied Materials & Interfaces – volume: 30 start-page: 1904156 year: 2020 ident: bb0195 article-title: A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment publication-title: Advanced Functional Materials – volume: 13 start-page: 24095 year: 2021 end-page: 24105 ident: bb0005 article-title: Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing publication-title: ACS Applied Materials & Interfaces – volume: 191 start-page: 714 year: 2021 end-page: 726 ident: bb0155 article-title: An in situ catechol functionalized epsilon-polylysine/polyacrylamide hydrogel formed by hydrogen bonding recombination with high mechanical property for hemostasis publication-title: International Journal of Biological Macromolecules – volume: 20 start-page: 1900370 year: 2020 ident: bb0030 article-title: Polysaccharide based hemostatic strategy for ultrarapid hemostasis publication-title: Macromolecular Bioscience – volume: 120 start-page: 4534 year: 2020 end-page: 4577 ident: bb0205 article-title: Sugar-based aggregation-induced emission luminogens: Design, structures, and applications publication-title: Chemical Reviews – volume: 11 start-page: 41 year: 2022 end-page: 51 ident: bb0120 article-title: Biomimetic hybrid hydrogel for hemostasis, adhesion prevention and promoting regeneration after partial liver resection publication-title: Bioactive Materials – volume: 73 start-page: 377 year: 2018 end-page: 387 ident: bb0015 article-title: An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells publication-title: Acta Biomaterialia – volume: 7 start-page: 12033 year: 2016 ident: bb0215 article-title: Gelation process visualized by aggregation-induced emission fluorogens publication-title: Nature Communications – volume: 264 year: 2021 ident: bb0225 article-title: Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges publication-title: Carbohydrate Polymers – volume: 28 start-page: 1801000 year: 2018 ident: bb0235 article-title: An injectable supramolecular polymer nanocomposite hydrogel for prevention of breast cancer recurrence with theranostic and mammoplastic functions publication-title: Advanced Functional Materials – volume: 136 start-page: 170 year: 2021 end-page: 183 ident: bb0190 article-title: Chitosan-based multifunctional flexible hemostatic bio-hydrogel publication-title: Acta Biomaterialia – volume: 249 year: 2020 ident: bb0260 article-title: Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing publication-title: Carbohydrate Polymers – volume: 6 year: 2019 ident: bb0020 article-title: Influences on mechanical properties of chitosan nanofibrous membranes induced by incorporating graphene oxide nanosheets publication-title: Materials Research Express – volume: 105 start-page: 255 year: 2016 end-page: 274 ident: bb0185 article-title: Graphene-based materials for tissue engineering publication-title: Advanced Drug Delivery Reviews – volume: 31 start-page: 178 year: 2016 end-page: 185 ident: bb0010 article-title: PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage publication-title: Acta Biomaterialia – volume: 197 year: 2021 ident: bb0070 article-title: Synthesis and characterization of graphene oxide chitosan aerogels reinforced with flavan-3-ols as hemostatic agents publication-title: Colloids and Surfaces B: Biointerfaces – volume: 129 year: 2021 ident: bb0035 article-title: An injectable anti-microbial and adhesive hydrogel for the effective noncompressible visceral hemostasis and wound repair publication-title: Materials Science & Engineering. C, Materials for Biological Applications – volume: 20 start-page: 1900385 year: 2020 ident: bb0025 article-title: Novel poly(vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application publication-title: Macromolecular Bioscience – volume: 19 start-page: 731 year: 2018 end-page: 739 ident: bb0200 article-title: Exploration of blood coagulation of N-alkyl chitosan nanofiber membrane in vitro publication-title: Biomacromolecules – volume: 269 year: 2021 ident: bb0160 article-title: Rheology and direct write printing of chitosan - Graphene oxide nanocomposite hydrogels for differentiation of neuroblastoma cells publication-title: Carbohydrate Polymers – volume: 134 start-page: 45092 year: 2017 ident: bb0040 article-title: Chitosan-graphene oxide nanocomposites: Effect of graphene oxide nanosheets and glycerol plasticizer on thermal and mechanical properties publication-title: Journal of Applied Polymer Science – volume: 25 year: 2022 ident: bb0065 article-title: Biomedical applications of chitosan-graphene oxide nanocomposites publication-title: iScience – volume: 125 start-page: 557 year: 2017 end-page: 570 ident: bb0105 article-title: Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering publication-title: Carbon – volume: 276 year: 2022 ident: bb0255 article-title: In situ-formed adhesive hyaluronic acid hydrogel with prolonged amnion-derived conditioned medium release for diabetic wound repair publication-title: Carbohydrate Polymers – volume: 38 start-page: 363 issue: 2 year: 2017 ident: 10.1016/j.carbpol.2022.119824_bb0170 article-title: Porous chitosan/graphene oxide biocomposites for tissue engineering publication-title: Polymer Composites doi: 10.1002/pc.23594 – volume: 31 start-page: 2100093 issue: 23 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0250 article-title: Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: Enhancing biomineralization strategy publication-title: Advanced Functional Materials doi: 10.1002/adfm.202100093 – volume: 31 start-page: 2007457 issue: 14 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0265 article-title: Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery publication-title: Advanced Functional Materials doi: 10.1002/adfm.202007457 – volume: 276 year: 2022 ident: 10.1016/j.carbpol.2022.119824_bb0255 article-title: In situ-formed adhesive hyaluronic acid hydrogel with prolonged amnion-derived conditioned medium release for diabetic wound repair publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.118752 – volume: 197 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0070 article-title: Synthesis and characterization of graphene oxide chitosan aerogels reinforced with flavan-3-ols as hemostatic agents publication-title: Colloids and Surfaces B: Biointerfaces doi: 10.1016/j.colsurfb.2020.111398 – volume: 5 start-page: 773 issue: 11 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0080 article-title: Haemostatic materials for wound healing applications publication-title: Nature Reviews Chemistry doi: 10.1038/s41570-021-00323-z – volume: 25 issue: 1 year: 2022 ident: 10.1016/j.carbpol.2022.119824_bb0065 article-title: Biomedical applications of chitosan-graphene oxide nanocomposites publication-title: iScience doi: 10.1016/j.isci.2021.103629 – volume: 21 start-page: 1243 issue: 3 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0050 article-title: Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b01707 – volume: 75 start-page: 322 year: 2015 ident: 10.1016/j.carbpol.2022.119824_bb0095 article-title: Using absorbable chitosan hemostatic sponges as a promising surgical dressing publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2015.01.049 – volume: 9 start-page: 9221 issue: 11 year: 2017 ident: 10.1016/j.carbpol.2022.119824_bb0110 article-title: Injectable self-healing hydrogel with antimicrobial and antifouling properties publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b16192 – volume: 7 start-page: 12033 issue: 1 year: 2016 ident: 10.1016/j.carbpol.2022.119824_bb0215 article-title: Gelation process visualized by aggregation-induced emission fluorogens publication-title: Nature Communications doi: 10.1038/ncomms12033 – volume: 120 start-page: 4534 issue: 10 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0205 article-title: Sugar-based aggregation-induced emission luminogens: Design, structures, and applications publication-title: Chemical Reviews doi: 10.1021/acs.chemrev.9b00814 – volume: 25 start-page: 1352 issue: 9 year: 2015 ident: 10.1016/j.carbpol.2022.119824_bb0230 article-title: Novel biocompatible polysaccharide-based self-healing hydrogel publication-title: Advanced Functional Materials doi: 10.1002/adfm.201401502 – volume: 30 start-page: 1729 issue: 5 year: 2018 ident: 10.1016/j.carbpol.2022.119824_bb0045 article-title: Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions publication-title: Chemistry of Materials doi: 10.1021/acs.chemmater.8b00008 – volume: 135 start-page: 8238 issue: 22 year: 2013 ident: 10.1016/j.carbpol.2022.119824_bb0210 article-title: Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates publication-title: Journal of the American Chemical Society doi: 10.1021/ja312581r – volume: 129 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0035 article-title: An injectable anti-microbial and adhesive hydrogel for the effective noncompressible visceral hemostasis and wound repair publication-title: Materials Science & Engineering. C, Materials for Biological Applications doi: 10.1016/j.msec.2021.112422 – volume: 105 start-page: 255 issue: Pt B year: 2016 ident: 10.1016/j.carbpol.2022.119824_bb0185 article-title: Graphene-based materials for tissue engineering publication-title: Advanced Drug Delivery Reviews doi: 10.1016/j.addr.2016.03.007 – volume: 37 start-page: 3665 issue: 8 year: 2018 ident: 10.1016/j.carbpol.2022.119824_bb0165 article-title: Chitosan/graphene oxide-based multifunctional pH-responsive hydrogel with significant mechanical strength, self-healing property, and shape memory effect publication-title: Advances in Polymer Technology doi: 10.1002/adv.22151 – volume: 2 start-page: 1707 issue: 6 year: 2010 ident: 10.1016/j.carbpol.2022.119824_bb0245 article-title: Well-dispersed chitosan/graphene oxide nanocomposites publication-title: ACS Applied Materials & Interfaces doi: 10.1021/am100222m – volume: 13 start-page: 24095 issue: 20 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0005 article-title: Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c02089 – volume: 269 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0160 article-title: Rheology and direct write printing of chitosan - Graphene oxide nanocomposite hydrogels for differentiation of neuroblastoma cells publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.118254 – volume: 20 start-page: 1900370 issue: 4 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0030 article-title: Polysaccharide based hemostatic strategy for ultrarapid hemostasis publication-title: Macromolecular Bioscience doi: 10.1002/mabi.201900370 – volume: 249 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0260 article-title: Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2020.116826 – volume: 73 start-page: 377 year: 2018 ident: 10.1016/j.carbpol.2022.119824_bb0015 article-title: An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2018.04.027 – volume: 2009189 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0090 article-title: Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel publication-title: Advanced Functional Materials – volume: 21 start-page: 1841 issue: 5 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0125 article-title: Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing publication-title: Biomacromolecules doi: 10.1021/acs.biomac.9b01732 – volume: 30 start-page: 1904156 issue: 1 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0195 article-title: A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment publication-title: Advanced Functional Materials doi: 10.1002/adfm.201904156 – volume: 6 start-page: 1901041 issue: 19 year: 2019 ident: 10.1016/j.carbpol.2022.119824_bb0175 article-title: Endoscopically injectable shear-thinning hydrogels facilitating polyp removal publication-title: Advanced Science (Weinheim) – volume: 134 start-page: 45092 issue: 30 year: 2017 ident: 10.1016/j.carbpol.2022.119824_bb0040 article-title: Chitosan-graphene oxide nanocomposites: Effect of graphene oxide nanosheets and glycerol plasticizer on thermal and mechanical properties publication-title: Journal of Applied Polymer Science doi: 10.1002/app.45092 – volume: 11 start-page: 2879 issue: 11 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0135 article-title: Multi-scale photoacoustic assessment of wound healing using chitosan-graphene oxide hemostatic sponge publication-title: Nanomaterials doi: 10.3390/nano11112879 – volume: 6 start-page: 4816 issue: 12 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0145 article-title: An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2021.05.022 – volume: 2 start-page: 296 issue: 2 year: 2014 ident: 10.1016/j.carbpol.2022.119824_bb0085 article-title: Supramolecular hydrogel of chitosan in the presence of graphene oxide nanosheets as 2D cross-linkers publication-title: ACS Sustainable Chemistry & Engineering doi: 10.1021/sc400352a – volume: 24 start-page: 3933 issue: 25 year: 2014 ident: 10.1016/j.carbpol.2022.119824_bb0060 article-title: A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing publication-title: Advanced Functional Materials doi: 10.1002/adfm.201304202 – volume: 20 start-page: 1900385 issue: 3 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0025 article-title: Novel poly(vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application publication-title: Macromolecular Bioscience doi: 10.1002/mabi.201900385 – volume: 11 start-page: 41 year: 2022 ident: 10.1016/j.carbpol.2022.119824_bb0120 article-title: Biomimetic hybrid hydrogel for hemostasis, adhesion prevention and promoting regeneration after partial liver resection publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2021.10.001 – volume: 136 start-page: 170 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0190 article-title: Chitosan-based multifunctional flexible hemostatic bio-hydrogel publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2021.09.056 – volume: 264 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0225 article-title: Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.118028 – volume: 125 start-page: 557 year: 2017 ident: 10.1016/j.carbpol.2022.119824_bb0105 article-title: Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering publication-title: Carbon doi: 10.1016/j.carbon.2017.09.071 – volume: 267 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0140 article-title: Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2021.118179 – volume: 28 start-page: 1801000 issue: 21 year: 2018 ident: 10.1016/j.carbpol.2022.119824_bb0235 article-title: An injectable supramolecular polymer nanocomposite hydrogel for prevention of breast cancer recurrence with theranostic and mammoplastic functions publication-title: Advanced Functional Materials doi: 10.1002/adfm.201801000 – volume: 8 start-page: 9833 issue: 10 year: 2014 ident: 10.1016/j.carbpol.2022.119824_bb0075 article-title: Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage publication-title: ACS Nano doi: 10.1021/nn503719n – volume: 199 start-page: 401 year: 2022 ident: 10.1016/j.carbpol.2022.119824_bb0220 article-title: Injectable hydrogel based on dodecyl-modified N-carboxyethyl chitosan/oxidized konjac glucomannan effectively prevents bleeding and postoperative adhesions after partial hepatectomy publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2021.12.193 – volume: 15 start-page: 1900046 issue: 12 year: 2019 ident: 10.1016/j.carbpol.2022.119824_bb0130 article-title: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing publication-title: Small doi: 10.1002/smll.201900046 – volume: 13 start-page: 53541 issue: 45 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0055 article-title: Injectable, intrinsically antibacterial conductive hydrogels with self-healing and pH stimulus responsiveness for epidermal sensors and wound healing publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.1c14216 – volume: 2 start-page: 279 issue: 5 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0100 article-title: Perylene-based fluorescent sizing agent for precise evaluation of permeability and coating property of sizing paste publication-title: Advanced Fiber Materials doi: 10.1007/s42765-020-00050-y – volume: 19 start-page: 731 issue: 3 year: 2018 ident: 10.1016/j.carbpol.2022.119824_bb0200 article-title: Exploration of blood coagulation of N-alkyl chitosan nanofiber membrane in vitro publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01492 – volume: 15 issue: 8 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0240 article-title: Synthesis of injectable shear-thinning biomaterials of various compositions of gelatin and synthetic silicate nanoplatelet publication-title: Biotechnology Journal doi: 10.1002/biot.201900456 – volume: 6 issue: 7 year: 2019 ident: 10.1016/j.carbpol.2022.119824_bb0020 article-title: Influences on mechanical properties of chitosan nanofibrous membranes induced by incorporating graphene oxide nanosheets publication-title: Materials Research Express doi: 10.1088/2053-1591/ab1555 – volume: 31 start-page: 178 year: 2016 ident: 10.1016/j.carbpol.2022.119824_bb0010 article-title: PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage publication-title: Acta Biomaterialia doi: 10.1016/j.actbio.2015.11.017 – volume: 191 start-page: 714 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0155 article-title: An in situ catechol functionalized epsilon-polylysine/polyacrylamide hydrogel formed by hydrogen bonding recombination with high mechanical property for hemostasis publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2021.09.100 – volume: 6 start-page: 2829 issue: 9 year: 2021 ident: 10.1016/j.carbpol.2022.119824_bb0180 article-title: A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2021.01.039 – volume: 7 start-page: 98 year: 2022 ident: 10.1016/j.carbpol.2022.119824_bb0150 article-title: An injectable, self-healing, electroconductive extracellular matrix-based hydrogel for enhancing tissue repair after traumatic spinal cord injury publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2021.05.039 – volume: 250 year: 2020 ident: 10.1016/j.carbpol.2022.119824_bb0115 article-title: Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2020.116922 |
SSID | ssj0000610 |
Score | 2.65205 |
Snippet | Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119824 |
SubjectTerms | adhesion biocompatibility catalysts Chitosan Graphene oxide heat Hemostasis hydrogels Injectable and self-healing hydrogel liver pollutants rats synthesis wastes Wound healing |
Title | Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing |
URI | https://dx.doi.org/10.1016/j.carbpol.2022.119824 https://www.proquest.com/docview/2693773895 https://www.proquest.com/docview/2718267322 |
Volume | 294 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvQiPvFZVvCatvvOHkuxVMWeLPQWkiZrt5Td0t2iXvztzmR3fYEWPG5IQnaSfPMNk5kh5NplCj2HAWUxU9RzpUvZtCuo9GPmyEgJ17gLHkbBcOzdTfxJg_TrWBh8Vllhf4npBq2rlk4lzc4ySTr4LMljqIAdk_4ag_g8L8T8-e03-wsam4wE2Jli788ons4cTMCVXGbogXAcAI-IOd5v-ukHUhv1M9gjuxVvtHrl0vZJQ6cHZLtfl2s7JMLUpqbFLDFFiCyRKivXi5giFcQGdBhkuUipyVENEGdlL4nS1uxVrbInvbCAvlowXwZ8MU9yM8EzFl2yqhmOyHhw89gf0qp-Ap3CLS5owJgO5bQbSSWFCZG1FVggQNCANKnIBt3tSqwqyGJbO7YWYBraUSi1r6NuJLR7TJppluoTjOyOmK9UDGRGekyBBQ7EhbnAxmQsdKxPiVdLjU-r5OJY42LB61dkc14Jm6OweSnsU9L-GLYss2tsGsDqLeHfjgkHDbBp6FW9hRy2Bv0iItXZOudOAL8VAnPz_-gToiEWAvyd_X8J52QHv1D12f4FaRartb4ETlPIljm0LbLVu70fjt4BEgb28Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoAL4ineFIlr2PpOjtPENF47gcQtSpYUiqZ2WoeAf4-dpbwkmMS1jaPUST9_lmObkNOQaYwcJpRlTNMoVCFlo46kKs5YoLiWoQ0X3AyTwV10eR_fN0ivzoXBa5UO--eYbtHaPWk7bbYned7Ga0kRQwMc2PLXfIm0sDoVHPZW9-JqMPwCyLYoAY6nKPCZyNN-Ai9wqiYlBiGCAPCDsyD6zUT9AGtrgfprZNVRR687X906aZhigyz36o5tm0Ta9tR09pjbPkSeLLRXmXFGkQ3iA4wZlJUsqC1TDSjnla-5Nt7jm56WD2bsAYP1YL4SKGOVV3aCF-y75LkZtshd__y2N6CuhQIdwY88owljJlWjDldaSZsl62twQoCjAW_S3AfzHSpsLMgy3wS-keAd-jxVJja8w6UJt0mzKAuzg8ndnMVaZ8BnVMQ0OOHAXVgIhExl0mRml0S11sTI1RfHNhdjUV8kexJO2QKVLebK3iVnH2KTeYGNRQKs3hLx7aQIMAKLRE_qLRSwNRgakYUpnysRJPBZKZC3-I8xKfpiKSDg3v-XcEyWB7c31-L6Yni1T1bwDVpCPz4gzdn02RwCxZmpI3eE3wGFKPmi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear-thinning+and+self-healing+chitosan-graphene+oxide+hydrogel+for+hemostasis+and+wound+healing&rft.jtitle=Carbohydrate+polymers&rft.au=Feng%2C+Wenjun&rft.au=Wang%2C+Zhengke&rft.date=2022-10-15&rft.issn=0144-8617&rft.volume=294&rft.spage=119824&rft_id=info:doi/10.1016%2Fj.carbpol.2022.119824&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carbpol_2022_119824 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |