Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing

Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hy...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 294; p. 119824
Main Authors Feng, Wenjun, Wang, Zhengke
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.10.2022
Subjects
Online AccessGet full text
ISSN0144-8617
1879-1344
1879-1344
DOI10.1016/j.carbpol.2022.119824

Cover

Loading…
Abstract Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing. [Display omitted] •CSGO hydrogels are facilely prepared by green fabrication strategy, without any pollutant and waste generated.•Gelation mechanism based on the variations of hydrogen bonds among CS chains and disordering degree of GO is proposed.•CSGO hydrogels have shear-thinning injectable, self-healing and adhesive properties.•CSGO hydrogels possess prominent hemostatic and wound healing capacity, have promising future for use as wound dressings.
AbstractList Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing. [Display omitted] •CSGO hydrogels are facilely prepared by green fabrication strategy, without any pollutant and waste generated.•Gelation mechanism based on the variations of hydrogen bonds among CS chains and disordering degree of GO is proposed.•CSGO hydrogels have shear-thinning injectable, self-healing and adhesive properties.•CSGO hydrogels possess prominent hemostatic and wound healing capacity, have promising future for use as wound dressings.
Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing.Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing.
Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually fabricated by multistep chemical synthesis and the use of organic solvents and catalyst. Herein, we report an injectable and self-healing hydrogel facilely prepared through one-pot heating of chitosan and graphene oxide mixture solution, without any pollutant and waste generated. The dynamic reversible breakage and recombination of noncovalent bonds between chitosan and graphene oxide endows the hydrogel injectability and self-healing ability. In addition, the mechanical and rheological properties of the hydrogels can be controlled by varying the dosage of graphene oxide. Meanwhile, hydrogels exhibited good adhesiveness and hemocompatibility. Finally, in vivo experiments in a rat liver bleeding model and full-thickness skin defect model verified the outstanding hemostatic and wound healing capability of the hydrogels, indicating the promising future for use as wound dressing.
ArticleNumber 119824
Author Feng, Wenjun
Wang, Zhengke
Author_xml – sequence: 1
  givenname: Wenjun
  surname: Feng
  fullname: Feng, Wenjun
– sequence: 2
  givenname: Zhengke
  surname: Wang
  fullname: Wang, Zhengke
  email: wangzk@zju.edu.cn
BookMark eNqFkLFu2zAQhokgAWI7eYQAGrvI5VGiSKJDURhNU8BAhjYzQVEni4ZMuiTdJm8fOfbUxTfcAYf_-4dvTq598EjIA9AlUGg-b5fWxHYfxiWjjC0BlGT1FZmBFKqEqq6vyYxCXZeyAXFL5ilt6TQN0BkxvwY0scyD8975TWF8VyQc-3J6j8eHHVwOyfhyE81-QI9FeHUdFsNbF8MGx6IPsRhwF1I2yaWPgn_hMO1zwx256c2Y8P58F-Tl8fvv1VO5fv7xc_VtXdqK8lw2UqJoLVVt1xpGlRLQMRBccN5Ap6AGXrVcKpA9IAM0dd2AEi1yVFQZrBbk06l3H8OfA6asdy5ZHEfjMRySZgIka0TF2OVooyohKqn4FOWnqI0hpYi93ke3M_FNA9VH-3qrz_b10b4-2Z-4L_9x1mWTXfA5GjdepL-eaJyE_XUYdbIOvcXORbRZd8FdaHgHStKl_w
CitedBy_id crossref_primary_10_1016_j_envres_2023_117027
crossref_primary_10_1016_j_carbpol_2024_122568
crossref_primary_10_1016_j_nantod_2024_102400
crossref_primary_10_1016_j_carbpol_2024_122204
crossref_primary_10_1007_s13726_023_01229_x
crossref_primary_10_1016_j_ijbiomac_2024_135482
crossref_primary_10_1016_j_carbpol_2024_121912
crossref_primary_10_1021_acsabm_2c00885
crossref_primary_10_1039_D2NR06617C
crossref_primary_10_3390_gels10010081
crossref_primary_10_1039_D2CS00173J
crossref_primary_10_1208_s12249_024_02948_x
crossref_primary_10_1039_D3MH01403G
crossref_primary_10_1021_acsanm_3c04413
crossref_primary_10_1016_j_biomaterials_2023_122184
crossref_primary_10_1016_j_ijbiomac_2024_137374
crossref_primary_10_1016_j_carbpol_2023_121640
crossref_primary_10_52711_0974_360X_2024_00784
crossref_primary_10_1039_D3MH00411B
crossref_primary_10_1007_s11696_024_03857_w
crossref_primary_10_1016_j_ijbiomac_2023_127193
crossref_primary_10_1016_j_carbpol_2023_121408
crossref_primary_10_1016_j_cej_2023_146340
crossref_primary_10_1016_j_ijbiomac_2025_142057
crossref_primary_10_1002_adfm_202405876
crossref_primary_10_1016_j_ijbiomac_2024_138290
crossref_primary_10_1016_j_carbpol_2023_121172
crossref_primary_10_2147_IJN_S483541
crossref_primary_10_1002_mco2_70113
crossref_primary_10_1002_slct_202405715
crossref_primary_10_1021_acsami_2c09309
crossref_primary_10_1016_j_ijbiomac_2024_134098
crossref_primary_10_1002_adhm_202401490
crossref_primary_10_1039_D3TB01904G
crossref_primary_10_1002_adhm_202303456
crossref_primary_10_1039_D4QM00562G
crossref_primary_10_3390_polym16081098
crossref_primary_10_1039_D4QM00073K
crossref_primary_10_1016_j_reactfunctpolym_2025_106229
crossref_primary_10_1007_s11664_023_10307_y
crossref_primary_10_1016_j_eurpolymj_2023_112673
crossref_primary_10_1016_j_ijbiomac_2024_130551
crossref_primary_10_1016_j_ijbiomac_2024_132182
crossref_primary_10_1002_cam4_70183
crossref_primary_10_1016_j_actbio_2023_05_025
crossref_primary_10_1016_j_cej_2025_160379
crossref_primary_10_1016_j_diamond_2024_110789
crossref_primary_10_1016_j_cis_2025_103425
crossref_primary_10_3390_pharmaceutics15030807
crossref_primary_10_1016_j_cej_2023_148067
crossref_primary_10_2147_IJN_S472107
crossref_primary_10_1016_j_matdes_2023_111896
crossref_primary_10_1016_j_biopha_2022_114184
crossref_primary_10_1016_j_eurpolymj_2024_113232
crossref_primary_10_1021_acsbiomaterials_2c00730
crossref_primary_10_1016_j_carbpol_2024_121952
crossref_primary_10_1186_s12951_023_01925_z
crossref_primary_10_1002_sstr_202400462
crossref_primary_10_3390_gels10040241
crossref_primary_10_1016_j_carbpol_2022_120502
crossref_primary_10_1039_D4BM00394B
crossref_primary_10_1007_s10924_022_02577_0
crossref_primary_10_1039_D3BM00169E
crossref_primary_10_1177_20417314241282131
crossref_primary_10_1021_acs_langmuir_2c01669
crossref_primary_10_1016_j_ijbiomac_2024_138708
crossref_primary_10_1016_j_mtbio_2024_101315
crossref_primary_10_1016_j_addma_2024_104397
crossref_primary_10_3390_molecules28031473
crossref_primary_10_3390_polym16162345
crossref_primary_10_1016_j_ijbiomac_2023_126854
crossref_primary_10_34133_research_0571
crossref_primary_10_1002_jbm_b_35435
crossref_primary_10_2174_0113816128333493241014134711
crossref_primary_10_1016_j_cej_2023_144648
crossref_primary_10_1016_j_ijbiomac_2024_138413
crossref_primary_10_1016_j_mtbio_2023_100592
crossref_primary_10_3390_polym15092000
crossref_primary_10_1002_adfm_202408367
crossref_primary_10_1016_j_ijbiomac_2024_135270
crossref_primary_10_1021_acs_langmuir_3c03366
crossref_primary_10_1016_j_ijbiomac_2024_137209
crossref_primary_10_3389_fbioe_2023_1335211
crossref_primary_10_1016_j_foodchem_2024_142359
crossref_primary_10_3390_polym15061567
crossref_primary_10_1016_j_progpolymsci_2024_101872
crossref_primary_10_3390_polym14224964
crossref_primary_10_1016_j_ijbiomac_2024_131575
crossref_primary_10_1016_j_ijbiomac_2025_141259
crossref_primary_10_1021_acsami_3c11403
crossref_primary_10_1007_s12247_024_09901_2
crossref_primary_10_1021_acsbiomaterials_3c00161
crossref_primary_10_1002_smll_202304047
crossref_primary_10_1016_j_ijbiomac_2023_127960
crossref_primary_10_1016_j_bioactmat_2024_12_025
crossref_primary_10_1002_adhm_202400884
crossref_primary_10_1007_s10118_024_3146_0
crossref_primary_10_1016_j_surfin_2023_103733
crossref_primary_10_1016_j_carbpol_2023_121707
crossref_primary_10_1016_j_carbpol_2024_122817
crossref_primary_10_1016_j_cej_2025_160852
crossref_primary_10_1039_D2TB02738K
crossref_primary_10_1039_D3NR01624B
crossref_primary_10_1002_advs_202303326
crossref_primary_10_1016_j_ijbiomac_2023_129115
crossref_primary_10_1016_j_seppur_2024_126812
Cites_doi 10.1002/pc.23594
10.1002/adfm.202100093
10.1002/adfm.202007457
10.1016/j.carbpol.2021.118752
10.1016/j.colsurfb.2020.111398
10.1038/s41570-021-00323-z
10.1016/j.isci.2021.103629
10.1021/acs.biomac.9b01707
10.1016/j.ijbiomac.2015.01.049
10.1021/acsami.6b16192
10.1038/ncomms12033
10.1021/acs.chemrev.9b00814
10.1002/adfm.201401502
10.1021/acs.chemmater.8b00008
10.1021/ja312581r
10.1016/j.msec.2021.112422
10.1016/j.addr.2016.03.007
10.1002/adv.22151
10.1021/am100222m
10.1021/acsami.1c02089
10.1016/j.carbpol.2021.118254
10.1002/mabi.201900370
10.1016/j.carbpol.2020.116826
10.1016/j.actbio.2018.04.027
10.1021/acs.biomac.9b01732
10.1002/adfm.201904156
10.1002/app.45092
10.3390/nano11112879
10.1016/j.bioactmat.2021.05.022
10.1021/sc400352a
10.1002/adfm.201304202
10.1002/mabi.201900385
10.1016/j.bioactmat.2021.10.001
10.1016/j.actbio.2021.09.056
10.1016/j.carbpol.2021.118028
10.1016/j.carbon.2017.09.071
10.1016/j.carbpol.2021.118179
10.1002/adfm.201801000
10.1021/nn503719n
10.1016/j.ijbiomac.2021.12.193
10.1002/smll.201900046
10.1021/acsami.1c14216
10.1007/s42765-020-00050-y
10.1021/acs.biomac.7b01492
10.1002/biot.201900456
10.1088/2053-1591/ab1555
10.1016/j.actbio.2015.11.017
10.1016/j.ijbiomac.2021.09.100
10.1016/j.bioactmat.2021.01.039
10.1016/j.bioactmat.2021.05.039
10.1016/j.carbpol.2020.116922
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.carbpol.2022.119824
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
ExternalDocumentID 10_1016_j_carbpol_2022_119824
S0144861722007299
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M24
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
R2-
RIG
SCB
SEW
SMS
SOC
SSH
WUQ
XPP
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c305t-688e7bc09bdba209971d217575561d914153b58918f1e21ea446197be5e909ae3
IEDL.DBID .~1
ISSN 0144-8617
1879-1344
IngestDate Thu Sep 04 19:27:35 EDT 2025
Thu Sep 04 21:08:06 EDT 2025
Tue Jul 01 01:24:52 EDT 2025
Thu Apr 24 23:03:09 EDT 2025
Fri Feb 23 02:40:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Graphene oxide
Wound healing
Chitosan
Hemostasis
Injectable and self-healing hydrogel
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c305t-688e7bc09bdba209971d217575561d914153b58918f1e21ea446197be5e909ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2693773895
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2718267322
proquest_miscellaneous_2693773895
crossref_primary_10_1016_j_carbpol_2022_119824
crossref_citationtrail_10_1016_j_carbpol_2022_119824
elsevier_sciencedirect_doi_10_1016_j_carbpol_2022_119824
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Carbohydrate polymers
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chan, Kim, Wang, Pun, White, Kim (bb0010) 2016; 31
Song, Kong, Shao, Cheng, Lu, Tao, Wang (bb0190) 2021; 136
Pandele, Ionita, Lungu, Vasile, Zaharia, Iovu (bb0170) 2017; 38
Jing, Mi, Napiwocki, Peng, Turng (bb0105) 2017; 125
Li, Yan, Yang, Huang, Chen, Zeng (bb0110) 2017; 9
Zhou, Dai, Fan, Jiang, Liu, Zhou, Tan (bb0265) 2021; 31
Wang, Chen, Lam, Qin, Kwok, Xie, Tang (bb0210) 2013; 135
Nath, Chowdhury, Dolui (bb0165) 2018; 37
Chen, Yang, Ye, Zhang, Ran, Xue, Hu (bb0015) 2018; 73
Liang, Zhao, Hu, Chen, Yin, Ma, Guo (bb0130) 2019; 15
Man, Sidi, Xubo, Jin, Xin (bb0155) 2021; 191
Wang, Nie, Qin, Hu, Tang (bb0215) 2016; 7
Marapureddy, Hivare, Sharma, Chakraborty, Ghosh, Gupta, Thareja (bb0160) 2021; 269
Fan, Liu, Wang, Zhang, Lin, Gong, Yang (bb0060) 2014; 24
Liang, Chen, Li, He, Yin, Guo (bb0125) 2020; 21
Jin, Wang, Hu, Li, Yuan (bb0100) 2020; 2
Wei, Yang, Liu, Xu, Zhou, Zrínyi, Chen (bb0230) 2015; 25
Cao, Wu, Cheng, He, Chen, Zhou (bb0005) 2021; 13
Du, Liu, Yan, Rafique, Li, Shan, Wang (bb0050) 2020; 21
Zheng, Bian, Li, Zhang, Liu, Zhai, Zhao (bb0260) 2020; 249
Huang, Sun, Nie, Lu, Yang, Zhang, Hu (bb0095) 2015; 75
Wei, Ding, Liu, Yang, Cai, Li, Tian (bb0225) 2021; 264
Shin, Li, Jang, Khoshakhlagh, Akbari, Nasajpour, Khademhosseini (bb0185) 2016; 105
Li, Pei, Wan, Yang, Gu, Tao, Xiao (bb0115) 2020; 250
Wang, Zhang, Yang, Fu, Xu, Li, Lee (bb0195) 2020; 30
Chen, Wu, Li, Hao, Yang, Xi, Shi (bb0030) 2020; 20
Deng, Guo, Zhao, Ma, Guo (bb0045) 2018; 30
Liu, Wu, Zhao, Wang (bb0140) 2021; 267
Qiao, Lv, He, Bai, Liu, Hou, Yang (bb0180) 2021; 6
Huang, Cheng, Wang, Zhang, Chen, Zhang (bb0090) 2021; 2009189
Chen, Jiang, Li, Zimba, Yu, Chen, Wu (bb0020) 2019; 6
Cobos, González, Fernández, Fernández (bb0040) 2017; 134
Li, Zhao, Ouyang, Yang, Chen, Luo, Li (bb0120) 2022; 11
Fan, He, Peng, Xie, Su, Wei, Yao (bb0055) 2021; 13
Yang, Tu, Li, Shang, Tao (bb0245) 2010; 2
Guo, Dong, Liang, Li (bb0080) 2021; 5
Luo, Shi, Li, Tan, Feng, Li, He (bb0145) 2021; 6
Pang, Liu, Moussa, Collins, McDonnell, Hayward, Traverso (bb0175) 2019; 6
Chen, Wu, Wang, Zaldivar-Silva, Aguero, Liu, Wang (bb0035) 2021; 129
Chen, Wang, Jian, Fei, Qian, Luo, Xia (bb0025) 2020; 20
Luo, Fan, Liu, Wen, Wang, Guan, Tan (bb0150) 2022; 7
Wei, Cui, Fan, Wu, Li, Zhang, Yang (bb0220) 2022; 199
Han, Yan (bb0085) 2014; 2
Lin, Shen, Wang (bb0135) 2021; 11
Feng, Wang (bb0065) 2022; 25
Zhang, Sun, Wang, Zhang, Dong, Bu, Wang (bb0250) 2021; 31
Figueroa, Carmona, Guajardo, Borges, Aguayo, Fernández (bb0070) 2021; 197
Wang, Guan, Zhuang, Li, Huang, Yang, Shu (bb0200) 2018; 19
Wu, Wang, Gao, Xu, Dai, Liu (bb0235) 2018; 28
Zhang, Zheng, Shu, Zhou, Bao, Xiao, Xia (bb0255) 2022; 276
Xue, Xie, Eichenbaum, Chen, Wang, van den Dolder, Khademhosseini (bb0240) 2020; 15
Wang, Nie, Fang, Yang, Hu, Wang, Tang (bb0205) 2020; 120
Gaharwar, Avery, Assmann, Paul, McKinley, Khademhosseini, Olsen (bb0075) 2014; 8
Wei (10.1016/j.carbpol.2022.119824_bb0220) 2022; 199
Feng (10.1016/j.carbpol.2022.119824_bb0065) 2022; 25
Nath (10.1016/j.carbpol.2022.119824_bb0165) 2018; 37
Huang (10.1016/j.carbpol.2022.119824_bb0090) 2021; 2009189
Gaharwar (10.1016/j.carbpol.2022.119824_bb0075) 2014; 8
Wang (10.1016/j.carbpol.2022.119824_bb0210) 2013; 135
Marapureddy (10.1016/j.carbpol.2022.119824_bb0160) 2021; 269
Pang (10.1016/j.carbpol.2022.119824_bb0175) 2019; 6
Guo (10.1016/j.carbpol.2022.119824_bb0080) 2021; 5
Qiao (10.1016/j.carbpol.2022.119824_bb0180) 2021; 6
Chen (10.1016/j.carbpol.2022.119824_bb0030) 2020; 20
Chen (10.1016/j.carbpol.2022.119824_bb0020) 2019; 6
Wang (10.1016/j.carbpol.2022.119824_bb0200) 2018; 19
Wei (10.1016/j.carbpol.2022.119824_bb0225) 2021; 264
Song (10.1016/j.carbpol.2022.119824_bb0190) 2021; 136
Wang (10.1016/j.carbpol.2022.119824_bb0205) 2020; 120
Fan (10.1016/j.carbpol.2022.119824_bb0060) 2014; 24
Xue (10.1016/j.carbpol.2022.119824_bb0240) 2020; 15
Cao (10.1016/j.carbpol.2022.119824_bb0005) 2021; 13
Wang (10.1016/j.carbpol.2022.119824_bb0215) 2016; 7
Chen (10.1016/j.carbpol.2022.119824_bb0015) 2018; 73
Liu (10.1016/j.carbpol.2022.119824_bb0140) 2021; 267
Chan (10.1016/j.carbpol.2022.119824_bb0010) 2016; 31
Pandele (10.1016/j.carbpol.2022.119824_bb0170) 2017; 38
Jing (10.1016/j.carbpol.2022.119824_bb0105) 2017; 125
Zhou (10.1016/j.carbpol.2022.119824_bb0265) 2021; 31
Fan (10.1016/j.carbpol.2022.119824_bb0055) 2021; 13
Liang (10.1016/j.carbpol.2022.119824_bb0125) 2020; 21
Jin (10.1016/j.carbpol.2022.119824_bb0100) 2020; 2
Cobos (10.1016/j.carbpol.2022.119824_bb0040) 2017; 134
Figueroa (10.1016/j.carbpol.2022.119824_bb0070) 2021; 197
Lin (10.1016/j.carbpol.2022.119824_bb0135) 2021; 11
Luo (10.1016/j.carbpol.2022.119824_bb0145) 2021; 6
Wei (10.1016/j.carbpol.2022.119824_bb0230) 2015; 25
Wang (10.1016/j.carbpol.2022.119824_bb0195) 2020; 30
Wu (10.1016/j.carbpol.2022.119824_bb0235) 2018; 28
Liang (10.1016/j.carbpol.2022.119824_bb0130) 2019; 15
Chen (10.1016/j.carbpol.2022.119824_bb0035) 2021; 129
Man (10.1016/j.carbpol.2022.119824_bb0155) 2021; 191
Zhang (10.1016/j.carbpol.2022.119824_bb0250) 2021; 31
Du (10.1016/j.carbpol.2022.119824_bb0050) 2020; 21
Li (10.1016/j.carbpol.2022.119824_bb0110) 2017; 9
Yang (10.1016/j.carbpol.2022.119824_bb0245) 2010; 2
Zhang (10.1016/j.carbpol.2022.119824_bb0255) 2022; 276
Huang (10.1016/j.carbpol.2022.119824_bb0095) 2015; 75
Li (10.1016/j.carbpol.2022.119824_bb0120) 2022; 11
Zheng (10.1016/j.carbpol.2022.119824_bb0260) 2020; 249
Shin (10.1016/j.carbpol.2022.119824_bb0185) 2016; 105
Luo (10.1016/j.carbpol.2022.119824_bb0150) 2022; 7
Chen (10.1016/j.carbpol.2022.119824_bb0025) 2020; 20
Deng (10.1016/j.carbpol.2022.119824_bb0045) 2018; 30
Han (10.1016/j.carbpol.2022.119824_bb0085) 2014; 2
Li (10.1016/j.carbpol.2022.119824_bb0115) 2020; 250
References_xml – volume: 21
  start-page: 1841
  year: 2020
  end-page: 1852
  ident: bb0125
  article-title: Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing
  publication-title: Biomacromolecules
– volume: 135
  start-page: 8238
  year: 2013
  end-page: 8245
  ident: bb0210
  article-title: Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates
  publication-title: Journal of the American Chemical Society
– volume: 15
  year: 2020
  ident: bb0240
  article-title: Synthesis of injectable shear-thinning biomaterials of various compositions of gelatin and synthetic silicate nanoplatelet
  publication-title: Biotechnology Journal
– volume: 75
  start-page: 322
  year: 2015
  end-page: 329
  ident: bb0095
  article-title: Using absorbable chitosan hemostatic sponges as a promising surgical dressing
  publication-title: International Journal of Biological Macromolecules
– volume: 38
  start-page: 363
  year: 2017
  end-page: 370
  ident: bb0170
  article-title: Porous chitosan/graphene oxide biocomposites for tissue engineering
  publication-title: Polymer Composites
– volume: 31
  start-page: 2007457
  year: 2021
  ident: bb0265
  article-title: Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery
  publication-title: Advanced Functional Materials
– volume: 267
  year: 2021
  ident: bb0140
  article-title: Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review
  publication-title: Carbohydrate Polymers
– volume: 6
  start-page: 1901041
  year: 2019
  ident: bb0175
  article-title: Endoscopically injectable shear-thinning hydrogels facilitating polyp removal
  publication-title: Advanced Science (Weinheim)
– volume: 7
  start-page: 98
  year: 2022
  end-page: 111
  ident: bb0150
  article-title: An injectable, self-healing, electroconductive extracellular matrix-based hydrogel for enhancing tissue repair after traumatic spinal cord injury
  publication-title: Bioactive Materials
– volume: 25
  start-page: 1352
  year: 2015
  end-page: 1359
  ident: bb0230
  article-title: Novel biocompatible polysaccharide-based self-healing hydrogel
  publication-title: Advanced Functional Materials
– volume: 8
  start-page: 9833
  year: 2014
  end-page: 9842
  ident: bb0075
  article-title: Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage
  publication-title: ACS Nano
– volume: 2
  start-page: 279
  year: 2020
  end-page: 290
  ident: bb0100
  article-title: Perylene-based fluorescent sizing agent for precise evaluation of permeability and coating property of sizing paste
  publication-title: Advanced Fiber Materials
– volume: 37
  start-page: 3665
  year: 2018
  end-page: 3679
  ident: bb0165
  article-title: Chitosan/graphene oxide-based multifunctional pH-responsive hydrogel with significant mechanical strength, self-healing property, and shape memory effect
  publication-title: Advances in Polymer Technology
– volume: 6
  start-page: 2829
  year: 2021
  end-page: 2840
  ident: bb0180
  article-title: A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings
  publication-title: Bioactive Materials
– volume: 2
  start-page: 1707
  year: 2010
  end-page: 1713
  ident: bb0245
  article-title: Well-dispersed chitosan/graphene oxide nanocomposites
  publication-title: ACS Applied Materials & Interfaces
– volume: 21
  start-page: 1243
  year: 2020
  end-page: 1253
  ident: bb0050
  article-title: Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure
  publication-title: Biomacromolecules
– volume: 2
  start-page: 296
  year: 2014
  end-page: 300
  ident: bb0085
  article-title: Supramolecular hydrogel of chitosan in the presence of graphene oxide nanosheets as 2D cross-linkers
  publication-title: ACS Sustainable Chemistry & Engineering
– volume: 31
  start-page: 2100093
  year: 2021
  ident: bb0250
  article-title: Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: Enhancing biomineralization strategy
  publication-title: Advanced Functional Materials
– volume: 199
  start-page: 401
  year: 2022
  end-page: 412
  ident: bb0220
  article-title: Injectable hydrogel based on dodecyl-modified N-carboxyethyl chitosan/oxidized konjac glucomannan effectively prevents bleeding and postoperative adhesions after partial hepatectomy
  publication-title: International Journal of Biological Macromolecules
– volume: 11
  start-page: 2879
  year: 2021
  ident: bb0135
  article-title: Multi-scale photoacoustic assessment of wound healing using chitosan-graphene oxide hemostatic sponge
  publication-title: Nanomaterials
– volume: 15
  start-page: 1900046
  year: 2019
  ident: bb0130
  article-title: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing
  publication-title: Small
– volume: 5
  start-page: 773
  year: 2021
  end-page: 791
  ident: bb0080
  article-title: Haemostatic materials for wound healing applications
  publication-title: Nature Reviews Chemistry
– volume: 250
  year: 2020
  ident: bb0115
  article-title: Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials
  publication-title: Carbohydrate Polymers
– volume: 24
  start-page: 3933
  year: 2014
  end-page: 3943
  ident: bb0060
  article-title: A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing
  publication-title: Advanced Functional Materials
– volume: 30
  start-page: 1729
  year: 2018
  end-page: 1742
  ident: bb0045
  article-title: Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions
  publication-title: Chemistry of Materials
– volume: 9
  start-page: 9221
  year: 2017
  end-page: 9225
  ident: bb0110
  article-title: Injectable self-healing hydrogel with antimicrobial and antifouling properties
  publication-title: ACS Applied Materials & Interfaces
– volume: 6
  start-page: 4816
  year: 2021
  end-page: 4829
  ident: bb0145
  article-title: An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury
  publication-title: Bioactive Materials
– volume: 2009189
  year: 2021
  ident: bb0090
  article-title: Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel
  publication-title: Advanced Functional Materials
– volume: 13
  start-page: 53541
  year: 2021
  end-page: 53552
  ident: bb0055
  article-title: Injectable, intrinsically antibacterial conductive hydrogels with self-healing and pH stimulus responsiveness for epidermal sensors and wound healing
  publication-title: ACS Applied Materials & Interfaces
– volume: 30
  start-page: 1904156
  year: 2020
  ident: bb0195
  article-title: A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment
  publication-title: Advanced Functional Materials
– volume: 13
  start-page: 24095
  year: 2021
  end-page: 24105
  ident: bb0005
  article-title: Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing
  publication-title: ACS Applied Materials & Interfaces
– volume: 191
  start-page: 714
  year: 2021
  end-page: 726
  ident: bb0155
  article-title: An in situ catechol functionalized epsilon-polylysine/polyacrylamide hydrogel formed by hydrogen bonding recombination with high mechanical property for hemostasis
  publication-title: International Journal of Biological Macromolecules
– volume: 20
  start-page: 1900370
  year: 2020
  ident: bb0030
  article-title: Polysaccharide based hemostatic strategy for ultrarapid hemostasis
  publication-title: Macromolecular Bioscience
– volume: 120
  start-page: 4534
  year: 2020
  end-page: 4577
  ident: bb0205
  article-title: Sugar-based aggregation-induced emission luminogens: Design, structures, and applications
  publication-title: Chemical Reviews
– volume: 11
  start-page: 41
  year: 2022
  end-page: 51
  ident: bb0120
  article-title: Biomimetic hybrid hydrogel for hemostasis, adhesion prevention and promoting regeneration after partial liver resection
  publication-title: Bioactive Materials
– volume: 73
  start-page: 377
  year: 2018
  end-page: 387
  ident: bb0015
  article-title: An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells
  publication-title: Acta Biomaterialia
– volume: 7
  start-page: 12033
  year: 2016
  ident: bb0215
  article-title: Gelation process visualized by aggregation-induced emission fluorogens
  publication-title: Nature Communications
– volume: 264
  year: 2021
  ident: bb0225
  article-title: Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges
  publication-title: Carbohydrate Polymers
– volume: 28
  start-page: 1801000
  year: 2018
  ident: bb0235
  article-title: An injectable supramolecular polymer nanocomposite hydrogel for prevention of breast cancer recurrence with theranostic and mammoplastic functions
  publication-title: Advanced Functional Materials
– volume: 136
  start-page: 170
  year: 2021
  end-page: 183
  ident: bb0190
  article-title: Chitosan-based multifunctional flexible hemostatic bio-hydrogel
  publication-title: Acta Biomaterialia
– volume: 249
  year: 2020
  ident: bb0260
  article-title: Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing
  publication-title: Carbohydrate Polymers
– volume: 6
  year: 2019
  ident: bb0020
  article-title: Influences on mechanical properties of chitosan nanofibrous membranes induced by incorporating graphene oxide nanosheets
  publication-title: Materials Research Express
– volume: 105
  start-page: 255
  year: 2016
  end-page: 274
  ident: bb0185
  article-title: Graphene-based materials for tissue engineering
  publication-title: Advanced Drug Delivery Reviews
– volume: 31
  start-page: 178
  year: 2016
  end-page: 185
  ident: bb0010
  article-title: PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage
  publication-title: Acta Biomaterialia
– volume: 197
  year: 2021
  ident: bb0070
  article-title: Synthesis and characterization of graphene oxide chitosan aerogels reinforced with flavan-3-ols as hemostatic agents
  publication-title: Colloids and Surfaces B: Biointerfaces
– volume: 129
  year: 2021
  ident: bb0035
  article-title: An injectable anti-microbial and adhesive hydrogel for the effective noncompressible visceral hemostasis and wound repair
  publication-title: Materials Science & Engineering. C, Materials for Biological Applications
– volume: 20
  start-page: 1900385
  year: 2020
  ident: bb0025
  article-title: Novel poly(vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application
  publication-title: Macromolecular Bioscience
– volume: 19
  start-page: 731
  year: 2018
  end-page: 739
  ident: bb0200
  article-title: Exploration of blood coagulation of N-alkyl chitosan nanofiber membrane in vitro
  publication-title: Biomacromolecules
– volume: 269
  year: 2021
  ident: bb0160
  article-title: Rheology and direct write printing of chitosan - Graphene oxide nanocomposite hydrogels for differentiation of neuroblastoma cells
  publication-title: Carbohydrate Polymers
– volume: 134
  start-page: 45092
  year: 2017
  ident: bb0040
  article-title: Chitosan-graphene oxide nanocomposites: Effect of graphene oxide nanosheets and glycerol plasticizer on thermal and mechanical properties
  publication-title: Journal of Applied Polymer Science
– volume: 25
  year: 2022
  ident: bb0065
  article-title: Biomedical applications of chitosan-graphene oxide nanocomposites
  publication-title: iScience
– volume: 125
  start-page: 557
  year: 2017
  end-page: 570
  ident: bb0105
  article-title: Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering
  publication-title: Carbon
– volume: 276
  year: 2022
  ident: bb0255
  article-title: In situ-formed adhesive hyaluronic acid hydrogel with prolonged amnion-derived conditioned medium release for diabetic wound repair
  publication-title: Carbohydrate Polymers
– volume: 38
  start-page: 363
  issue: 2
  year: 2017
  ident: 10.1016/j.carbpol.2022.119824_bb0170
  article-title: Porous chitosan/graphene oxide biocomposites for tissue engineering
  publication-title: Polymer Composites
  doi: 10.1002/pc.23594
– volume: 31
  start-page: 2100093
  issue: 23
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0250
  article-title: Multifunctional injectable hydrogel dressings for effectively accelerating wound healing: Enhancing biomineralization strategy
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202100093
– volume: 31
  start-page: 2007457
  issue: 14
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0265
  article-title: Injectable self-healing natural biopolymer-based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202007457
– volume: 276
  year: 2022
  ident: 10.1016/j.carbpol.2022.119824_bb0255
  article-title: In situ-formed adhesive hyaluronic acid hydrogel with prolonged amnion-derived conditioned medium release for diabetic wound repair
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.118752
– volume: 197
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0070
  article-title: Synthesis and characterization of graphene oxide chitosan aerogels reinforced with flavan-3-ols as hemostatic agents
  publication-title: Colloids and Surfaces B: Biointerfaces
  doi: 10.1016/j.colsurfb.2020.111398
– volume: 5
  start-page: 773
  issue: 11
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0080
  article-title: Haemostatic materials for wound healing applications
  publication-title: Nature Reviews Chemistry
  doi: 10.1038/s41570-021-00323-z
– volume: 25
  issue: 1
  year: 2022
  ident: 10.1016/j.carbpol.2022.119824_bb0065
  article-title: Biomedical applications of chitosan-graphene oxide nanocomposites
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103629
– volume: 21
  start-page: 1243
  issue: 3
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0050
  article-title: Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b01707
– volume: 75
  start-page: 322
  year: 2015
  ident: 10.1016/j.carbpol.2022.119824_bb0095
  article-title: Using absorbable chitosan hemostatic sponges as a promising surgical dressing
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2015.01.049
– volume: 9
  start-page: 9221
  issue: 11
  year: 2017
  ident: 10.1016/j.carbpol.2022.119824_bb0110
  article-title: Injectable self-healing hydrogel with antimicrobial and antifouling properties
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.6b16192
– volume: 7
  start-page: 12033
  issue: 1
  year: 2016
  ident: 10.1016/j.carbpol.2022.119824_bb0215
  article-title: Gelation process visualized by aggregation-induced emission fluorogens
  publication-title: Nature Communications
  doi: 10.1038/ncomms12033
– volume: 120
  start-page: 4534
  issue: 10
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0205
  article-title: Sugar-based aggregation-induced emission luminogens: Design, structures, and applications
  publication-title: Chemical Reviews
  doi: 10.1021/acs.chemrev.9b00814
– volume: 25
  start-page: 1352
  issue: 9
  year: 2015
  ident: 10.1016/j.carbpol.2022.119824_bb0230
  article-title: Novel biocompatible polysaccharide-based self-healing hydrogel
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201401502
– volume: 30
  start-page: 1729
  issue: 5
  year: 2018
  ident: 10.1016/j.carbpol.2022.119824_bb0045
  article-title: Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host-guest interactions
  publication-title: Chemistry of Materials
  doi: 10.1021/acs.chemmater.8b00008
– volume: 135
  start-page: 8238
  issue: 22
  year: 2013
  ident: 10.1016/j.carbpol.2022.119824_bb0210
  article-title: Long-term fluorescent cellular tracing by the aggregates of AIE bioconjugates
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja312581r
– volume: 129
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0035
  article-title: An injectable anti-microbial and adhesive hydrogel for the effective noncompressible visceral hemostasis and wound repair
  publication-title: Materials Science & Engineering. C, Materials for Biological Applications
  doi: 10.1016/j.msec.2021.112422
– volume: 105
  start-page: 255
  issue: Pt B
  year: 2016
  ident: 10.1016/j.carbpol.2022.119824_bb0185
  article-title: Graphene-based materials for tissue engineering
  publication-title: Advanced Drug Delivery Reviews
  doi: 10.1016/j.addr.2016.03.007
– volume: 37
  start-page: 3665
  issue: 8
  year: 2018
  ident: 10.1016/j.carbpol.2022.119824_bb0165
  article-title: Chitosan/graphene oxide-based multifunctional pH-responsive hydrogel with significant mechanical strength, self-healing property, and shape memory effect
  publication-title: Advances in Polymer Technology
  doi: 10.1002/adv.22151
– volume: 2
  start-page: 1707
  issue: 6
  year: 2010
  ident: 10.1016/j.carbpol.2022.119824_bb0245
  article-title: Well-dispersed chitosan/graphene oxide nanocomposites
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/am100222m
– volume: 13
  start-page: 24095
  issue: 20
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0005
  article-title: Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c02089
– volume: 269
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0160
  article-title: Rheology and direct write printing of chitosan - Graphene oxide nanocomposite hydrogels for differentiation of neuroblastoma cells
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.118254
– volume: 20
  start-page: 1900370
  issue: 4
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0030
  article-title: Polysaccharide based hemostatic strategy for ultrarapid hemostasis
  publication-title: Macromolecular Bioscience
  doi: 10.1002/mabi.201900370
– volume: 249
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0260
  article-title: Catechol modified quaternized chitosan enhanced wet adhesive and antibacterial properties of injectable thermo-sensitive hydrogel for wound healing
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2020.116826
– volume: 73
  start-page: 377
  year: 2018
  ident: 10.1016/j.carbpol.2022.119824_bb0015
  article-title: An asymmetric chitosan scaffold for tendon tissue engineering: In vitro and in vivo evaluation with rat tendon stem/progenitor cells
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2018.04.027
– volume: 2009189
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0090
  article-title: Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel
  publication-title: Advanced Functional Materials
– volume: 21
  start-page: 1841
  issue: 5
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0125
  article-title: Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.9b01732
– volume: 30
  start-page: 1904156
  issue: 1
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0195
  article-title: A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201904156
– volume: 6
  start-page: 1901041
  issue: 19
  year: 2019
  ident: 10.1016/j.carbpol.2022.119824_bb0175
  article-title: Endoscopically injectable shear-thinning hydrogels facilitating polyp removal
  publication-title: Advanced Science (Weinheim)
– volume: 134
  start-page: 45092
  issue: 30
  year: 2017
  ident: 10.1016/j.carbpol.2022.119824_bb0040
  article-title: Chitosan-graphene oxide nanocomposites: Effect of graphene oxide nanosheets and glycerol plasticizer on thermal and mechanical properties
  publication-title: Journal of Applied Polymer Science
  doi: 10.1002/app.45092
– volume: 11
  start-page: 2879
  issue: 11
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0135
  article-title: Multi-scale photoacoustic assessment of wound healing using chitosan-graphene oxide hemostatic sponge
  publication-title: Nanomaterials
  doi: 10.3390/nano11112879
– volume: 6
  start-page: 4816
  issue: 12
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0145
  article-title: An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2021.05.022
– volume: 2
  start-page: 296
  issue: 2
  year: 2014
  ident: 10.1016/j.carbpol.2022.119824_bb0085
  article-title: Supramolecular hydrogel of chitosan in the presence of graphene oxide nanosheets as 2D cross-linkers
  publication-title: ACS Sustainable Chemistry & Engineering
  doi: 10.1021/sc400352a
– volume: 24
  start-page: 3933
  issue: 25
  year: 2014
  ident: 10.1016/j.carbpol.2022.119824_bb0060
  article-title: A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201304202
– volume: 20
  start-page: 1900385
  issue: 3
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0025
  article-title: Novel poly(vinyl alcohol)/chitosan/modified graphene oxide biocomposite for wound dressing application
  publication-title: Macromolecular Bioscience
  doi: 10.1002/mabi.201900385
– volume: 11
  start-page: 41
  year: 2022
  ident: 10.1016/j.carbpol.2022.119824_bb0120
  article-title: Biomimetic hybrid hydrogel for hemostasis, adhesion prevention and promoting regeneration after partial liver resection
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2021.10.001
– volume: 136
  start-page: 170
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0190
  article-title: Chitosan-based multifunctional flexible hemostatic bio-hydrogel
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2021.09.056
– volume: 264
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0225
  article-title: Polysaccharides-modified chitosan as improved and rapid hemostasis foam sponges
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.118028
– volume: 125
  start-page: 557
  year: 2017
  ident: 10.1016/j.carbpol.2022.119824_bb0105
  article-title: Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.09.071
– volume: 267
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0140
  article-title: Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2021.118179
– volume: 28
  start-page: 1801000
  issue: 21
  year: 2018
  ident: 10.1016/j.carbpol.2022.119824_bb0235
  article-title: An injectable supramolecular polymer nanocomposite hydrogel for prevention of breast cancer recurrence with theranostic and mammoplastic functions
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201801000
– volume: 8
  start-page: 9833
  issue: 10
  year: 2014
  ident: 10.1016/j.carbpol.2022.119824_bb0075
  article-title: Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage
  publication-title: ACS Nano
  doi: 10.1021/nn503719n
– volume: 199
  start-page: 401
  year: 2022
  ident: 10.1016/j.carbpol.2022.119824_bb0220
  article-title: Injectable hydrogel based on dodecyl-modified N-carboxyethyl chitosan/oxidized konjac glucomannan effectively prevents bleeding and postoperative adhesions after partial hepatectomy
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2021.12.193
– volume: 15
  start-page: 1900046
  issue: 12
  year: 2019
  ident: 10.1016/j.carbpol.2022.119824_bb0130
  article-title: Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing
  publication-title: Small
  doi: 10.1002/smll.201900046
– volume: 13
  start-page: 53541
  issue: 45
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0055
  article-title: Injectable, intrinsically antibacterial conductive hydrogels with self-healing and pH stimulus responsiveness for epidermal sensors and wound healing
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.1c14216
– volume: 2
  start-page: 279
  issue: 5
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0100
  article-title: Perylene-based fluorescent sizing agent for precise evaluation of permeability and coating property of sizing paste
  publication-title: Advanced Fiber Materials
  doi: 10.1007/s42765-020-00050-y
– volume: 19
  start-page: 731
  issue: 3
  year: 2018
  ident: 10.1016/j.carbpol.2022.119824_bb0200
  article-title: Exploration of blood coagulation of N-alkyl chitosan nanofiber membrane in vitro
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01492
– volume: 15
  issue: 8
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0240
  article-title: Synthesis of injectable shear-thinning biomaterials of various compositions of gelatin and synthetic silicate nanoplatelet
  publication-title: Biotechnology Journal
  doi: 10.1002/biot.201900456
– volume: 6
  issue: 7
  year: 2019
  ident: 10.1016/j.carbpol.2022.119824_bb0020
  article-title: Influences on mechanical properties of chitosan nanofibrous membranes induced by incorporating graphene oxide nanosheets
  publication-title: Materials Research Express
  doi: 10.1088/2053-1591/ab1555
– volume: 31
  start-page: 178
  year: 2016
  ident: 10.1016/j.carbpol.2022.119824_bb0010
  article-title: PolySTAT-modified chitosan gauzes for improved hemostasis in external hemorrhage
  publication-title: Acta Biomaterialia
  doi: 10.1016/j.actbio.2015.11.017
– volume: 191
  start-page: 714
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0155
  article-title: An in situ catechol functionalized epsilon-polylysine/polyacrylamide hydrogel formed by hydrogen bonding recombination with high mechanical property for hemostasis
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2021.09.100
– volume: 6
  start-page: 2829
  issue: 9
  year: 2021
  ident: 10.1016/j.carbpol.2022.119824_bb0180
  article-title: A mussel-inspired supramolecular hydrogel with robust tissue anchor for rapid hemostasis of arterial and visceral bleedings
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2021.01.039
– volume: 7
  start-page: 98
  year: 2022
  ident: 10.1016/j.carbpol.2022.119824_bb0150
  article-title: An injectable, self-healing, electroconductive extracellular matrix-based hydrogel for enhancing tissue repair after traumatic spinal cord injury
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2021.05.039
– volume: 250
  year: 2020
  ident: 10.1016/j.carbpol.2022.119824_bb0115
  article-title: Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2020.116922
SSID ssj0000610
Score 2.65205
Snippet Hydrogels with injectability, self-healing ability and adhesiveness have great potential for hemostasis and full-thickness skin wound repair, which are usually...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119824
SubjectTerms adhesion
biocompatibility
catalysts
Chitosan
Graphene oxide
heat
Hemostasis
hydrogels
Injectable and self-healing hydrogel
liver
pollutants
rats
synthesis
wastes
Wound healing
Title Shear-thinning and self-healing chitosan-graphene oxide hydrogel for hemostasis and wound healing
URI https://dx.doi.org/10.1016/j.carbpol.2022.119824
https://www.proquest.com/docview/2693773895
https://www.proquest.com/docview/2718267322
Volume 294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvQiPvFZVvCatvvOHkuxVMWeLPQWkiZrt5Td0t2iXvztzmR3fYEWPG5IQnaSfPMNk5kh5NplCj2HAWUxU9RzpUvZtCuo9GPmyEgJ17gLHkbBcOzdTfxJg_TrWBh8Vllhf4npBq2rlk4lzc4ySTr4LMljqIAdk_4ag_g8L8T8-e03-wsam4wE2Jli788ons4cTMCVXGbogXAcAI-IOd5v-ukHUhv1M9gjuxVvtHrl0vZJQ6cHZLtfl2s7JMLUpqbFLDFFiCyRKivXi5giFcQGdBhkuUipyVENEGdlL4nS1uxVrbInvbCAvlowXwZ8MU9yM8EzFl2yqhmOyHhw89gf0qp-Ap3CLS5owJgO5bQbSSWFCZG1FVggQNCANKnIBt3tSqwqyGJbO7YWYBraUSi1r6NuJLR7TJppluoTjOyOmK9UDGRGekyBBQ7EhbnAxmQsdKxPiVdLjU-r5OJY42LB61dkc14Jm6OweSnsU9L-GLYss2tsGsDqLeHfjgkHDbBp6FW9hRy2Bv0iItXZOudOAL8VAnPz_-gToiEWAvyd_X8J52QHv1D12f4FaRartb4ETlPIljm0LbLVu70fjt4BEgb28Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GdoAL4ineFIlr2PpOjtPENF47gcQtSpYUiqZ2WoeAf4-dpbwkmMS1jaPUST9_lmObkNOQaYwcJpRlTNMoVCFlo46kKs5YoLiWoQ0X3AyTwV10eR_fN0ivzoXBa5UO--eYbtHaPWk7bbYned7Ga0kRQwMc2PLXfIm0sDoVHPZW9-JqMPwCyLYoAY6nKPCZyNN-Ai9wqiYlBiGCAPCDsyD6zUT9AGtrgfprZNVRR687X906aZhigyz36o5tm0Ta9tR09pjbPkSeLLRXmXFGkQ3iA4wZlJUsqC1TDSjnla-5Nt7jm56WD2bsAYP1YL4SKGOVV3aCF-y75LkZtshd__y2N6CuhQIdwY88owljJlWjDldaSZsl62twQoCjAW_S3AfzHSpsLMgy3wS-keAd-jxVJja8w6UJt0mzKAuzg8ndnMVaZ8BnVMQ0OOHAXVgIhExl0mRml0S11sTI1RfHNhdjUV8kexJO2QKVLebK3iVnH2KTeYGNRQKs3hLx7aQIMAKLRE_qLRSwNRgakYUpnysRJPBZKZC3-I8xKfpiKSDg3v-XcEyWB7c31-L6Yni1T1bwDVpCPz4gzdn02RwCxZmpI3eE3wGFKPmi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shear-thinning+and+self-healing+chitosan-graphene+oxide+hydrogel+for+hemostasis+and+wound+healing&rft.jtitle=Carbohydrate+polymers&rft.au=Feng%2C+Wenjun&rft.au=Wang%2C+Zhengke&rft.date=2022-10-15&rft.issn=0144-8617&rft.volume=294&rft.spage=119824&rft_id=info:doi/10.1016%2Fj.carbpol.2022.119824&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_carbpol_2022_119824
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon