Binding of a Brownian nanoparticle to a thermally fluctuating membrane surface

We investigate the Brownian dynamics of a nanoparticle bound to a thermally undulating elastic membrane. The ligand-functionalized nanoparticle is assumed to interact monovalently with the receptor expressed on the membrane. In order to resolve the nanoparticle transient motion subject to the instan...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E Vol. 101; no. 3-1; p. 032604
Main Authors Chung, Hsueh-Te, Yu, Hsiu-Yu
Format Journal Article
LanguageEnglish
Published United States 01.03.2020
Online AccessGet more information

Cover

Loading…
More Information
Summary:We investigate the Brownian dynamics of a nanoparticle bound to a thermally undulating elastic membrane. The ligand-functionalized nanoparticle is assumed to interact monovalently with the receptor expressed on the membrane. In order to resolve the nanoparticle transient motion subject to the instantaneous membrane configuration in a consistent manner, we employ a set of coupled Langevin equations that simultaneously incorporate the hydrodynamic effects, ligand-receptor binding interaction, intramembrane elastic forces, and thermal fluctuations. We show that the presence of a deformable, elastic fluid membrane not only affects the dynamics of a bound nanoparticle but also alters the effective binding potential felt by the nanoparticle. In contrast to a nanoparticle bound to a flat surface, the oscillatory characteristics of the nanoparticle velocity autocorrelation function are suppressed and transition to an anticorrelated long-time tail. Moreover, the nanoparticle position fluctuation becomes more coherent with that of the membrane binding site, and the width of the distribution of the nanoparticle distance from the membrane decreases with increasing membrane bending rigidity. By introducing a locally harmonic, bistable potential as an effective potential for the ligand-receptor pair, the rate of nanoparticle transitioning between two bound states is facilitated by membrane undulations as a result of stronger positional variations associated with the nanoparticle.
ISSN:2470-0053
DOI:10.1103/PhysRevE.101.032604