Force-Field Derivation and Atomistic Simulation of HMX/Graphite Interface and Polycrystal Systems
Interface is the key issue to understand the performance of composite materials. In this work, we study the interface between octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and graphite, try to find out its contribution to mixture explosives. The work starts from the force-field derivation....
Saved in:
Published in | Communications in theoretical physics Vol. 57; no. 1; pp. 102 - 114 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2012
|
Subjects | |
Online Access | Get full text |
ISSN | 0253-6102 |
DOI | 10.1088/0253-6102/57/1/16 |
Cover
Loading…
Summary: | Interface is the key issue to understand the performance of composite materials. In this work, we study the interface between octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and graphite, try to find out its contribution to mixture explosives. The work starts from the force-field derivation. We get ab initio based pair potentials across the interface, and then use them to study the interface structural and mechanical properties. A series of large scale molecular dynamics simulations are performed. The structure evolution, energy variation and elastic/plastic transformation of interface and polycrystal systems are calculated. The desensitizing mechanism of graphite to HMX is discussed. |
---|---|
Bibliography: | 11-2592/O3 Interface is the key issue to understand the performance of composite materials. In this work, we study the interface between octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and graphite, try to find out its contribution to mixture explosives. The work starts from the force-field derivation. We get ab initio based pair potentials across the interface, and then use them to study the interface structural and mechanical properties. A series of large scale molecular dynamics simulations are performed. The structure evolution, energy variation and elastic/plastic transformation of interface and polycrystal systems are calculated. The desensitizing mechanism of graphite to HMX is discussed. graphite-coated HMX, interracial potentials, tensile test, polycrystal ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0253-6102 |
DOI: | 10.1088/0253-6102/57/1/16 |