Lyapunov and LMI analysis and feedback control of border collision bifurcations
Feedback control of piecewise smooth discrete-time systems that undergo border collision bifurcations is considered. These bifurcations occur when a fixed point or a periodic orbit of a piecewise smooth system crosses or collides with the border between two regions of smooth operation as a system pa...
Saved in:
Published in | Nonlinear dynamics Vol. 50; no. 3; pp. 373 - 386 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Nature B.V
01.11.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Feedback control of piecewise smooth discrete-time systems that undergo border collision bifurcations is considered. These bifurcations occur when a fixed point or a periodic orbit of a piecewise smooth system crosses or collides with the border between two regions of smooth operation as a system parameter is quasistatically varied. The class of systems studied is piecewise smooth maps that depend on a parameter, where the system dimension n can take any value. The goal of the control effort in this work is to replace the bifurcation so that in the closed-loop system, the steady state remains locally attracting and locally unique (“nonbifurcation with persistent stability”). To achieve this, Lyapunov and linear matrix inequality (LMI) techniques are used to derive a sufficient condition for nonbifurcation with persistent stability. The derived condition is stated in terms of LMIs. This condition is then used as a basis for the design of feedback controls to eliminate border collision bifurcations in piecewise smooth maps and to produce the desirable behavior noted earlier. Numerical examples that demonstrate the effectiveness of the proposed control techniques are given. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0924-090X 1573-269X |
DOI: | 10.1007/s11071-006-9169-y |