Recent Advances of First d-Block Metal-Based Perovskite Oxide Electrocatalysts for Alkaline Water Splitting

First d-block metal-based perovskite oxides (FDMPOs) have garnered significant attention in research for their utilization in the water oxidation reaction due to their low cost, earth abundance, and promising activities. Recently, FDMPOs are being applied in electrocatalysis for the hydrogen evoluti...

Full description

Saved in:
Bibliographic Details
Published inCatalysts Vol. 10; no. 7; p. 770
Main Authors Wang, Jian, Choi, Subin, Kim, Juwon, Cha, Suk Won, Lim, Jongwoo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2020
Subjects
Online AccessGet full text
ISSN2073-4344
2073-4344
DOI10.3390/catal10070770

Cover

Loading…
More Information
Summary:First d-block metal-based perovskite oxides (FDMPOs) have garnered significant attention in research for their utilization in the water oxidation reaction due to their low cost, earth abundance, and promising activities. Recently, FDMPOs are being applied in electrocatalysis for the hydrogen evolution reaction (HER) and overall water splitting reaction. Numerous promising FDMPO-based water splitting electrocatalysts have been reported, along with new catalytic mechanisms. Therefore, an in-time summary of the current progress of FDMPO-based water splitting electrocatalysts is now considered imperative. However, few reviews have focused on this particular subject thus far. In this contribution, we review the most recent advances (mainly within the years 2014–2020) of FDMPO electrocatalysts for alkaline water splitting, which is widely considered to be the most promising next-generation technology for future large-scale hydrogen production. This review begins with an introduction describing the fundamentals of alkaline water electrolysis and perovskite oxides. We then carefully elaborate on the various design strategies used for the preparation of FDMPO electrocatalysts applied in the alkaline water splitting reaction, including defecting engineering, strain tuning, nanostructuring, and hybridization. Finally, we discuss the current advances of various FDMPO-based water splitting electrocatalysts, including those based on Co, Ni, Fe, Mn, and other first d-block metal-based catalysts. By conveying various methods, developments, perspectives, and challenges, this review will contribute toward the understanding and development of FDMPO electrocatalysts for alkaline water splitting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-4344
2073-4344
DOI:10.3390/catal10070770