Structure-Functional Diversity of Human L-Type Ca2+Channel: Perspectives for New Pharmacological Targets
The L-type Ca2+ channels mediate depolarization-induced influx of Ca2+ into a wide variety of cells and thus play a central role in triggering cardiac and smooth muscle contraction. Because of this role, clinically important classes of 1,4-dihydropyridine, phenylalkylamine, and benzothiazepine Ca2+...
Saved in:
Published in | The Journal of pharmacology and experimental therapeutics Vol. 300; no. 3; pp. 724 - 728 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2002
American Society for Pharmacology and Experimental Therapeutics |
Subjects | |
Online Access | Get full text |
ISSN | 0022-3565 1521-0103 |
DOI | 10.1124/jpet.300.3.724 |
Cover
Loading…
Summary: | The L-type Ca2+ channels mediate depolarization-induced influx of Ca2+ into a wide variety of cells and thus play a central role in triggering cardiac and smooth muscle contraction. Because of this role, clinically important classes of 1,4-dihydropyridine, phenylalkylamine, and benzothiazepine Ca2+ channel blockers were developed as powerful medicines to treat hypertension and angina pectoris. Molecular cloning studies revealed that the channel is subject to extensive structure-functional variability due to alternative splicing. In this review, we will focus on a potentially important role of genetically driven variability of Ca2+ channels in expression regulation and mutations, Ca2+-induced inactivation, and modulation of sensitivity to Ca2+ channel blockers with the perspective for new pharmacological targets. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 0022-3565 1521-0103 |
DOI: | 10.1124/jpet.300.3.724 |