Microstructure and mechanical characteristics of surface oxide dispersion-strengthened Zircaloy-4 cladding tube
To increase the mechanical strength of Zircaloy-4 cladding at high temperatures, partial oxide dispersion-strengthened (ODS) treatment of the cladding tube surface was achieved by using laser processing technology. The microstructural characteristics and stability of the ODS layer formed on the Zirc...
Saved in:
Published in | Additive manufacturing Vol. 22; pp. 75 - 85 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To increase the mechanical strength of Zircaloy-4 cladding at high temperatures, partial oxide dispersion-strengthened (ODS) treatment of the cladding tube surface was achieved by using laser processing technology. The microstructural characteristics and stability of the ODS layer formed on the Zircaloy-4 cladding surface were analyzed at temperatures up to 1000 °C. Ring tensile and loss-of-coolant accident (LOCA) simulation tests were performed to evaluate the mechanical properties of the surface ODS treated Zircaloy-4 cladding tube. The formation and uniform distribution of Y2O3 particles formed in the Zr matrix were identified, and the stability of the particles was confirmed up to 1000 °C. When compared to the reference Zircaloy-4 cladding tube, the surface ODS treated Zircaloy-4 cladding tube showed improved mechanical properties at both room temperature and 500 °C, as well as under LOCA simulation conditions. |
---|---|
ISSN: | 2214-8604 2214-7810 |
DOI: | 10.1016/j.addma.2018.05.002 |