Human object interaction detection based on feature optimization and key human-object enhancement
Aiming at the problem of unclear or missing human object interaction behavior objects in complex background, we propose a human object interaction detection algorithm based on feature optimization and key human-object enhancement. In order to solve the problem of missing human behavior objects, we p...
Saved in:
Published in | Journal of visual communication and image representation Vol. 93; p. 103824 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Aiming at the problem of unclear or missing human object interaction behavior objects in complex background, we propose a human object interaction detection algorithm based on feature optimization and key human-object enhancement. In order to solve the problem of missing human behavior objects, we propose Feature Optimized Faster Region Convolutional Neural Network (FOFR-CNN). FOFR-CNN is an object detection network optimized by multi-scale feature optimization algorithm, taking into account both image semantics and image structure. In order to reduce the interference of complex background, we propose a Key Human-Object Enhancement Network. The network uses an instance-based method to enhance the features of interactive objects. In order to enrich the interaction information, we use the graph convolutional network. Experimental results on HICO-DET, V-COCO and HOI-A datasets show that the proposed algorithm has significantly improved accuracy and multi-scale object detection ability compared with other human object interaction algorithms. |
---|---|
ISSN: | 1047-3203 1095-9076 |
DOI: | 10.1016/j.jvcir.2023.103824 |