Mitochondrial adaptation in steatotic mice
Western lifestyle-associated malnutrition causes steatosis that may progress to liver inflammation and mitochondrial dysfunction has been suggested as a key factor in promoting this disease. Here we have molecularly, biochemically and biophysically analyzed mitochondria from steatotic wild type and...
Saved in:
Published in | Mitochondrion Vol. 40; pp. 1 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Western lifestyle-associated malnutrition causes steatosis that may progress to liver inflammation and mitochondrial dysfunction has been suggested as a key factor in promoting this disease. Here we have molecularly, biochemically and biophysically analyzed mitochondria from steatotic wild type and immune-compromised mice fed a Western diet (WD) - enriched in saturated fatty acids (SFAs). WD-mitochondria demonstrated lipidomic changes, a decreased mitochondrial ATP production capacity and a significant sensitivity to calcium. These changes preceded hepatocyte damage and were not associated with enhanced ROS production. Thus, WD-mitochondria do not promote steatohepatitis per se, but demonstrate bioenergetic deficits and increased sensitivity to stress signals. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1567-7249 1872-8278 |
DOI: | 10.1016/j.mito.2017.08.015 |