High-temperature operation of 640 nm wavelength high-power laser diode arrays

We realized the fabrication of a red semiconductor laser array with high optical power and reliability using an AlGaInP-based compound semiconductor. To obtain a high optical output, the semiconductor laser requires high-quality quantum wells. In this work, we improved quantum well layer abruptness...

Full description

Saved in:
Bibliographic Details
Published inJapanese Journal of Applied Physics Vol. 56; no. 3; p. 32702
Main Author Imanishi, Daisuke
Format Journal Article
LanguageEnglish
Published The Japan Society of Applied Physics 01.03.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We realized the fabrication of a red semiconductor laser array with high optical power and reliability using an AlGaInP-based compound semiconductor. To obtain a high optical output, the semiconductor laser requires high-quality quantum wells. In this work, we improved quantum well layer abruptness by applying high-temperature growth condition to quantum wells. We obtained a very high optical power of 20.1 W with a wavelength of 644 nm under this growth condition using magnesium as a dopant for a p-type layer. As a results, we achieved a high characteristic temperature of 68 K and a high electrical-to-optical (E-O) conversion efficiency 37% at 15 W optical output. When the laser lifetime at a temperature of 35 °C and an optical output power of 6.6 W for operation is defined as the time when the output power decreases to 50%, which is usually used for defining the lifetime of ultra high-pressure (UHP) lamps in projection display, we can estimate the lifetime of this laser to be longer than 10000 h or more.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-4922
1347-4065
DOI:10.7567/JJAP.56.032702