Stitched image quality assessment based on local measurement errors and global statistical properties
Image stitching is developed to generate wide-field images or panoramic images for virtual reality applications. However, the quality assessment of stitched images with respect to various stitching algorithms has been less studied. Effective stitched image quality assessment (SIQA) is advantageous t...
Saved in:
Published in | Journal of visual communication and image representation Vol. 81; p. 103324 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Image stitching is developed to generate wide-field images or panoramic images for virtual reality applications. However, the quality assessment of stitched images with respect to various stitching algorithms has been less studied. Effective stitched image quality assessment (SIQA) is advantageous to evaluate the performance of various stitching methods and optimize the design of stitching methods. In this paper, we propose a novel SIQA method by exploiting local measurement errors and global statistical properties for feature extraction. Comprehensive image attributes including ghosting, misalignment, structural distortion, geometric error, chromatic aberrations and blur are considered either locally or globally. The extracted local and global features are aggregated into an overall quality via regression. Experimental results on two benchmark databases demonstrate the superiority of the proposed metric over both the state-of-the-art quality models designed for natural images and stitched images. |
---|---|
ISSN: | 1047-3203 1095-9076 |
DOI: | 10.1016/j.jvcir.2021.103324 |