A novel machine learning-based framework for the water quality parameters prediction using hybrid long short-term memory and locally weighted scatterplot smoothing methods

Water quality prediction is crucial for effective river stream management. Dissolved oxygen, conductivity and chemical oxygen demand are vital chemical parameters for water quality. Development of machine learning (ML) and deep learning (DL) methods made them widely used in this domain. Sophisticate...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 26; no. 5; pp. 1059 - 1079
Main Authors Dodig, Ana, Ricci, Elisa, Kvascev, Goran, Stojkovic, Milan
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Water quality prediction is crucial for effective river stream management. Dissolved oxygen, conductivity and chemical oxygen demand are vital chemical parameters for water quality. Development of machine learning (ML) and deep learning (DL) methods made them widely used in this domain. Sophisticated DL techniques, especially long short-term memory (LSTM) networks, are required for accurate, real-time multistep prediction. LSTM networks are effective in predicting water quality due to their ability to handle long-term dependencies in sequential data. We propose a novel hybrid approach for water quality parameters prediction combining DL with data smoothing method. The Sava river at the Jamena hydrological station serves as a case study. Our workflow uses LSTM networks alongside LOcally WEighted Scatterplot Smoothing (LOWESS) technique for data filtering. For comparison, Support Vector Regressor (SVR) is used as the baseline method. Performance is evaluated using Root Mean Squared Error (RMSE) and Coefficient of Determination R2 metrics. Results demonstrate that LSTM outperforms the baseline method, with an R2 up to 0.9998 and RMSE of 0.0230 on the test set for dissolved oxygen. Over a 5-day prediction period, our approach achieves R2 of 0.9912 and RMSE of 0.1610 confirming it as a reliable method for water quality multistep parameters prediction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1464-7141
1465-1734
DOI:10.2166/hydro.2024.273