Geometric phase of the one-dimensional Ising chain in a longitudinal field

For the one-dimensional Ising chain with spin-1∕2 and exchange couple J in a steady transverse field(TF), an analytical theory has well been developed in terms of some topological order parameters such as Berry phase(BP). For a TF Ising chain, the nonzero BP which depends on the exchange couple and...

Full description

Saved in:
Bibliographic Details
Published inPhysica A Vol. 540; p. 123084
Main Authors Liao, Yi, Chen, Ping-Xing
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.02.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:For the one-dimensional Ising chain with spin-1∕2 and exchange couple J in a steady transverse field(TF), an analytical theory has well been developed in terms of some topological order parameters such as Berry phase(BP). For a TF Ising chain, the nonzero BP which depends on the exchange couple and the field strength characterizes the corresponding symmetry breaking of parity and time reversal(PT). However, there seems to exist a topological phase transition for the one-dimensional Ising chain in a longitudinal field(LF) with the reduced field strength ϵ. If the LF is added at zero temperature, researchers believe that the LF also could influence the PT-symmetry and there exists the discontinuous BP. But the theoretic characterization has not been well founded. This paper tries to aim at this problem. With the Jordan–Wigner transformation, we give the four-fermion interaction form of the Hamiltonian in the one-dimensional Ising chain with a LF. Further by the method of Wick’s theorem and the mean-field theory, the four-fermion interaction is well dealt with. We solve the ground state energy and the ground wave function in the momentum space. We discuss the BP and suggest that there exist nonzero BPs when ϵ=0 in the paramagnetic case where J<0 and when −1<ϵ<1, in the diamagnetic case where J>0. •It presents a analytic expression of the Berry phase of the 1D Ising chain in longitudinal field.•It gives a kind of mean-field approximation for the four-fermion system based on the Wick’s theorem.
ISSN:0378-4371
1873-2119
DOI:10.1016/j.physa.2019.123084