Messages are Never Propagated Alone: Collaborative Hypergraph Neural Network for Time-Series Forecasting

This paper delves into the problem of correlated time-series forecasting in practical applications, an area of growing interest in a multitude of fields such as stock price prediction and traffic demand analysis. Current methodologies primarily represent data using conventional graph structures, yet...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on pattern analysis and machine intelligence Vol. 46; no. 4; pp. 1 - 15
Main Authors Yin, Nan, Shen, Li, Xiong, Huan, Gu, Bin, Chen, Chong, Hua, Xian-Sheng, Liu, Siwei, Luo, Xiao
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper delves into the problem of correlated time-series forecasting in practical applications, an area of growing interest in a multitude of fields such as stock price prediction and traffic demand analysis. Current methodologies primarily represent data using conventional graph structures, yet these fail to capture intricate structures with non-pairwise relationships. To address this challenge, we adopt dynamic hypergraphs in this study to better illustrate complex interactions, and introduce a novel hypergraph neural network model named CHNN for correlated time series forecasting. In more detail, CHNN leverages both semantic and topological similarities via an interaction model and hypergraph diffusion process, thereby constructing comprehensive collaborative correlation scores that effectively guide spatial message propagation. In addition, it incorporates short-term temporal information to generate efficient spatio-temporal feature maps. Lastly, a long-term temporal module is proposed to generate future predictions utilizing both temporal attention and a gated recurrent network. Comprehensive experiments conducted on four real-world datasets, i.e., Tiingo , Stocktwits , NYC-Taxi , and Social Network demonstrate that the proposed CHNN markedly outperforms a range of benchmark methods.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2023.3331389