Aggregation-Decomposition Coupling Drawdown Rule and Progressive Optimal Algorithm for Optimization of Large-Scale Reservoirs
With the increased construction reservoirs, hydropower systems are becoming larger and more complex, which brings challenges of optimal operation of large-scale reservoirs to improve the power generation. To address this efficiently, we propose an aggregation-decomposition method based on cascade re...
Saved in:
Published in | Water resources management Vol. 38; no. 14; pp. 5463 - 5483 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.11.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | With the increased construction reservoirs, hydropower systems are becoming larger and more complex, which brings challenges of optimal operation of large-scale reservoirs to improve the power generation. To address this efficiently, we propose an aggregation-decomposition method based on cascade reservoir drawdown rule. Based on a two-stage method, we analyze the monotonicity of power generation increment of cascade reservoirs and propose the drawdown rule, which we used to guide the drawdown order of cascade reservoirs. On this basis, we propose an aggregation-decomposition coupling drawdown rule and progressive optimal algorithm (ADDR-POA) method of large-scale reservoirs. To confirm the viability of the proposed approach, we selected 29 series–parallel-mixed reservoirs in the upper Yangtze River Basin in China as the study subjects and optimized them with the goal of maximizing the total power generation. Results show that compared to conventional mathematical optimization method and heuristic algorithm, ADDR-POA can effectively express the compensation effect between reservoirs and has a good performance in improving the total power generation of the basin and reducing iteration times, which presents a novel approach for solving the problem of drawdown operation of large-scale reservoirs. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0920-4741 1573-1650 |
DOI: | 10.1007/s11269-024-03863-3 |