An array-based melt curve analysis method for the identification and classification of closely related pathogen strains

Abstract PCR-based techniques are widely used to identify disease causing bacterial and viral pathogens, especially in point-of-care or near-patient clinical settings that require rapid results and sample-to-answer workflows. However, such techniques often fail to differentiate between closely relat...

Full description

Saved in:
Bibliographic Details
Published inBiology methods and protocols Vol. 3; no. 1; p. bpy005
Main Authors Hassibi, Arjang, Ebert, Jessica, Bolouki, Sara, Anemogiannis, Alexander, Mazarei, Gelareh, Li, Yuan, Johnson, Kirsten A, Van, Tran, Mantina, Pallavi, Gharooni, Taraneh, Jirage, Kshama, Pei, Lei, Sinha, Ruma, Manickam, Arun, Zia, Amin, Naraghi-Arani, Pejman, Schoolnik, Gary, Kuimelis, Robert G
Format Journal Article
LanguageEnglish
Published England Oxford University Press 2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract PCR-based techniques are widely used to identify disease causing bacterial and viral pathogens, especially in point-of-care or near-patient clinical settings that require rapid results and sample-to-answer workflows. However, such techniques often fail to differentiate between closely related species that have highly variable genomes. Here, a homogenous (closed-tube) pathogen identification and classification method is described that combines PCR amplification, array-based amplicon sequence verification, and real-time detection using an inverse fluorescence fluorescence-resonance energy transfer technique. The amplification is designed to satisfy the inclusivity criteria and create ssDNA amplicons, bearing a nonradiating quencher moiety at the 5ʹ-terminus, for all the related species. The array includes fluorescent-labeled probes which preferentially capture the variants of the amplicons and classify them through solid-phase thermal denaturing (melt curve) analysis. Systematic primer and probe design algorithms and empirical validation methods are presented and successfully applied to the challenging example of identification of, and differentiation between, closely related human rhinovirus and human enterovirus strains.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2396-8923
2396-8923
DOI:10.1093/biomethods/bpy005