A digital rock physics approach to effective and total porosity for complex carbonates: pore-typing and applications to electrical conductivity
Recent advances in micro-CT techniques allow imaging heterogeneous carbonates at multiple scales and including voxel-wise registration of images at different resolution or in different saturation states. This enables characterising such carbonates at the pore-scale targeting the optimizing of hydroc...
Saved in:
Published in | E3S Web of Conferences Vol. 89; p. 5002 |
---|---|
Main Authors | , , , , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Les Ulis
EDP Sciences
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recent advances in micro-CT techniques allow imaging heterogeneous carbonates at multiple scales and including voxel-wise registration of images at different resolution or in different saturation states. This enables characterising such carbonates at the pore-scale targeting the optimizing of hydrocarbon recovery in the face of structural heterogeneity, resulting in complex spatial fluid distributions. Here we determine effective and total porosity for different pore-types in a complex carbonate and apply this knowledge to improve our understanding of electrical properties by integrating experiment and simulation in a consistent manner via integrated core analysis. We consider Indiana Limestone as a surrogate for complex carbonate rock and type porosity in terms of macro- and micro-porosity using micro-CT images recorded at different resolution. Effective and total porosity fields are derived and partitioned into regions of macro-porosity, micro-porosity belonging to oolithes, and micro-porosity excluding oolithes’ rims. In a second step we use the partitioning of the micro-porosity to model the electrical conductivity of the limestone, matching experimental measurements by finding appropriate cementation exponents for the two different micro-porosity regions. We compare these calculations with calculations using a single cementation exponent for the full micro-porosity range. The comparison is extended to resistivity index at partial saturation, further testing the assignment of Archie parameters, providing insights into the regional connectivity of the different pore types. |
---|---|
ISSN: | 2267-1242 2555-0403 2267-1242 |
DOI: | 10.1051/e3sconf/20198905002 |