Elimination of Random Mixed Noise in ECG Using Convolutional Denoising Autoencoder With Transformer Encoder

Electrocardiogram (ECG) signals frequently encounter diverse types of noise, such as baseline wander (BW), electrode motion (EM) artifacts, muscle artifact (MA), and others. These noises often occur in combination during the actual data acquisition process, resulting in erroneous or perplexing inter...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 4; pp. 1993 - 2004
Main Authors Chen, Meng, Li, Yongjian, Zhang, Liting, Liu, Lei, Han, Baokun, Shi, Wenzhuo, Wei, Shoushui
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Electrocardiogram (ECG) signals frequently encounter diverse types of noise, such as baseline wander (BW), electrode motion (EM) artifacts, muscle artifact (MA), and others. These noises often occur in combination during the actual data acquisition process, resulting in erroneous or perplexing interpretations for cardiologists. To suppress random mixed noise (RMN) in ECG with less distortion, we propose a Transformer-based Convolutional Denoising AutoEncoder model (TCDAE) in this study. The encoder of TCDAE is composed of three stacked gated convolutional layers and a Transformer encoder block with a point-wise multi-head self-attention module. To obtain minimal distortion in both time and frequency domains, we also propose a frequency weighted Huber loss function in training phase to better approximate the original signals. The TCDAE model is trained and tested on the QT Database (QTDB) and MIT-BIH Noise Stress Test Database (NSTDB), with the training data and testing data coming from different records. All the metrics perform the most robust in overall noise and separate noise intervals for RMN removal compared with the baseline methods. We also conduct generalization tests on the Icentia11k database where the TCDAE outperforms the state-of-the-art models, with a 55% reduction of the false positives in R peak detection after denoising. The TCDAE model approximates the short-term and long-term characteristics of ECG signals and has higher stability even under extreme RMN corruption. The memory consumption and inference speed of TCDAE are also feasible for its deployment in clinical applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2024.3355960