Perfect Hilbert algebras
In [S. Celani and L. Cabrer. Duality for finite Hilbert algebras. Discrete Math., 305(1-3):74{99, 2005.] the authors proved that every finite Hilbert algebra A is isomorphic to the Hilbert algebra HK(X) = {w ⇒ i v : w ∈ K and v ⊆ w}, where X is a finite poset, K is a distinguished collection of subs...
Saved in:
Published in | Reports on mathematical logic Vol. 59; no. 59; pp. 27 - 48 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Kraków
Wydawnictwo Uniwersytetu Jagiellońskiego
01.01.2024
Jagiellonian University Press Jagiellonian University-Jagiellonian University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In [S. Celani and L. Cabrer. Duality for finite Hilbert algebras. Discrete Math., 305(1-3):74{99, 2005.] the authors proved that every finite Hilbert algebra A is isomorphic to the Hilbert algebra HK(X) = {w ⇒ i v : w ∈ K and v ⊆ w}, where X is a finite poset, K is a distinguished collection of subsets of X, and the implication ⇒i is defined by: w ⇒i v = {x ∈ X : w ∩ [x) ⊆ v}, where [x) = {y ∈ X : x ≤ y.} The Hilbert implication on HK(X) is the usual Heyting implication ⇒ i (as just defined) given on the increasing subsets. In the same article, Celani and Cabrer extended this representation to a full categorical duality. The aim of the present article is to obtain an algebraic characterization of the Hilbert algebras HK(X) for all structures (X, ≤, K) defined by Celani and Cabrer but not necessarily finite. Then, we shall extend this representation to a full dual equivalence generalizing the finite setting given by Celani and Cabrer. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0137-2904 2084-2589 |
DOI: | 10.4467/20842589RM.24.001.20697 |